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Overview of the Talk

Freezing Salt Water Model
Computational Approach

Discussion

® Summary
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Motivation

® Part of a group project looking at biological phenomena in sea
ice formation

® Need for a computational framework to include micro-scale
phenomena at macroscopic scales
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Scaled Equations

® ((x,t) is the scaled temperature
® nis the scaled local salt concentration
® ¢ is the brine fraction

O+¢) = O« Enthalpy conservation
(¢n)e = d(m(¢p)ny)x Salt conservation
04+bn = 0 Cryoscopic relationship
mo) = 9=

1— ¢
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Scales

(0 + d))t = exx
(¢n)e = d(m(¢)nx)x
0+bn = 0

Scales:
Length: 1m
Time: 10 days
Temperature: 150C
Salt: 3.5% by weight
d: 1.6x1073
b: 0.012
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Three Regimes
® ¢ < ¢, Immobile brine:

(9 + ¢)t = Qxx
(¢pn)e = 0, 0+nb=0
One parabolic, one local ODE with “history”.
® ¢, < ¢ <1 Mushy:
(0 + ¢)t = exx
(¢n)e = d(m(d)nc)x, 6+ nb=0
Mixed parabolic - hyperbolic system.
® ¢ =1 Free brine:
91_» = 9XX

Ny = dny

Two parabolic.
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Computations

Discretization

Conservative cell centered Finite Difference scheme
mj1/2 = min[m(s;), m(sj31)] 7

Implicit (Backward Euler) time stepping

Iterative method based on regime flag updates (two flags)
Inner Newton iterations

This strategy leads to a consistent solution. Theory?
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Computations

Results

(Computations with relaxed parameters d = 0.025 and b =1)
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Mushy Region

0 obeys an equation of parabolic type

Assuming smooth solutions, we can derive

(0 + dm(¢))r = (dm — ¢)0: + dm' O,
Neglecting O(d) terms in the first two terms

/
—dmexgbxm—?é?t

P =~y 9

We recognize a hyperbolic equation with wave speed

_ dm'(¢)0«

> 0

S is small and negative in our simulation conditions.
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Mushy/Brine Interface

The mushy zone is characterized by a mixed
parabolic/hyperbolic system

The hyperbolic component has a slow wave speed to the left

When characteristics are exiting the interface, the interface is
of implicit type and s is continuous (s = 1)
When the interface is moving fast enough to the left, s is

discontinuous and the interface is of explicit type (normal
velocity determined by Enthalpy conservation).
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More questions than answers:

e Computational method proposed to capture regime
boundaries in sea ice formation as part of a larger project.

® Analysis of the model? Convergence analysis of the numerical
method?

® Can the model be considered as a gradient flow with
constraint

(6 —1)(@+nb)=0
with the phase change rate as a Lagrange multiplier?

® Does the model emerge with formal asymptotics for large
phase change rate?
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