Approximating the Arctan Function With many asides

Brian Wetton
www.math.ubc.ca/~wetton

Archimedes Lecture
March 5, 2022

Builder's Approximation of Arctan

Letter received by UBC Professor, June 1992
I have a small problem which has been plaguing me and my fellow builders for some time now.

What we are seeking is a mathematical equation to determine rafter angles. I came up with what I thought was a good formula but it does not seem to quite work. As you can see from the diagram, I began with a roof with a pitch of $4 / 11$. Assuming of course that the right angle is 90°, this means the other two angles must add up to 90°. I added 4 and 11 together obtaining 15 . I then divided 90° by 15 giving me 6°. From there I multiplied $6^{\circ} \times 11$ to give me 66° as one angle and $6^{\circ} \times 4$ to give me 24° as the other angle.

Now, although we thought we were on the right track here, we found the rafters were always out by a few degrees. We have not ruled out the possibility that we made a mistake in the measurement somewhere but before we go through the whole process again, perhaps you could tell us if our equation is correct or not. If it is not, please put us on to the correct equation (try to keep it fairly simple as we have not been in school for quite a few years and our math skills are a bit rusty). Thank you.

Builder's Approximation of Arctan
Diagram

Exact.

Builder's Approximation

$$
\downarrow
$$

$$
\begin{aligned}
& \theta_{1} \approx B\left(\frac{4}{11}\right)=24^{\circ} \\
& \theta_{2} \approx B\left(\frac{11}{4}\right)=66^{\circ}
\end{aligned}
$$

approvimation
of arctan.

$$
\begin{gathered}
\theta_{1}=\arctan \left(\frac{4}{11}\right)= \\
19.9831 \ldots \\
\theta_{2}=\arctan \left(\frac{11}{4}\right)= \\
70.0169
\end{gathered}
$$

Arctan Function

Unit circle

- $\arctan (x)+\arctan (1 / x)=\pi / 2$
- $\arctan (x)$ can also be written $\tan ^{-1}(x)$ but that can be confusing
- Be careful when the resulting angle is not in the first quadrant

Builder's Approximation

$$
B(x)=\frac{\pi}{2} \frac{x}{1+x}
$$

- $B(x)$ preserves the property $B(x)+B(1 / x)=\pi / 2$.
- It is exact at values 0 and 1 .
- It can be evaluated using only basic arithmetic operations (addition, subtraction, multiplication, and division).
- It is a low order Padé approximation.

Builders Need a Scientific Calculator

Or a table

How to Make the Table of Tangent Values?

Without a scientific calculator I

- $\tan 30^{\circ}=1 / \sqrt{3}$
- Trigonometric identity

$$
\tan 2 a=\frac{2 \tan a}{1-\tan ^{2} a}
$$

- So if $y=\tan 15^{\circ}(\tan \pi / 12)$, we know that

$$
\frac{1}{\sqrt{3}}=\frac{2 y}{1-y^{2}}
$$

- y solves the quadratic

$$
y^{2}+2 \sqrt{3} y-1=0
$$

and $y=2-\sqrt{3} \approx 0.2679$.

- We can work out $\tan \left(30^{\circ} / 2^{n}\right)$ for any n.

How to Make the Table of Tangent Values?

Without a scientific calculator II

- We can work out $\tan \left(30^{\circ} / 2^{n}\right)$ for any n.
- Trigonometric identity

$$
\tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}
$$

- We can work out $\tan \left(30^{\circ} p / 2^{n}\right)$ for any integers p and n.
- (We can accurately interpolate desired values)
- This would let us complete the table.
- Be careful with the accuracy of intermediate computations

Aside: Computing Square Roots With Basic Arithmetic

Babylonian square root formula

- To find $x=\sqrt{A}$
- Iterative formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{A}{x^{n}}\right)
$$

(the average of two values, one bigger than \sqrt{A} and one smaller).

- The iterates x_{n} get closer and closer to \sqrt{A} as n increases. We write

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{A}
$$

- The convergence is quite rapid as shown below with $A=2$ and $x_{0}=2$:

$$
2 \rightarrow 1.5 \rightarrow 1.4167 \rightarrow 1.4142
$$

Aside: Computing Square Roots With Basic Arithmetic Babylonian square root formula is Newton's Method

- Tangent line (point-slope formula):

$$
y=x_{n}^{2}-A+2 x_{n}\left(x-x_{n}\right)
$$

- Set $y=0$ and solve for $x=x_{n+1}$:

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-A}{2 x_{n}}=\frac{1}{2}\left(x_{n}+A / x_{n}\right)
$$

Aside: Computing Square Roots

- There is a systematic way to compute squate roots quickly on an abacus.
- You can use Log tables to compute square roots

$$
\sqrt{x}=10^{\frac{1}{2} \log _{10} x}
$$

- You can use slide rules to compute square roots (they are built with a logarithmic scale).
- Log tables and slide rules give a quick way to multiply multi-digit numbers

$$
x y=10^{\log _{10} x+\log _{10} y}
$$

Approximating the Arctan Function for $x \in[0,1]$

 Use truncated McLaurin series I$$
\arctan x=x-x^{3} / 3+x^{5} / 5-x^{7} / 7+\ldots
$$

- The infinite series converges for $x \leq 1$.
- The truncated series involves only basic arithmetic operations.

Approximating the Arctan Function for $x \in[0,1]$

Use truncated McLaurin series II

- The accuracy for $x \leq 1 / 2$ is much better than for x near 1 .
- With 4 terms, the truncated McLaurin series has a relative error of less than 0.0001 for $x \leq 1 / 2$.

Approximating the Arctan Function for $x \in[0,1]$

Use truncated McLaurin series III

- Still need an accurate formula for $x \in(1 / 2,1]$
- if $x \in(1 / 2,1]$,

$$
\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}
$$

is in $(0,1 / 2)$.

- Use the identity

$$
\arctan x=2 \arctan \left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)
$$

for the win.

- These are most of the ingredients for the implementation of arctangent on older floating point units. Current implementations are proprietary.

