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• Faculty participation from many departments.

• Interdisciplinary graduate programme.
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Overview of the Talk

• Errors from computational methods using regular grids to
compute smooth solutions have additional structure.

• This structure can
• allow Richardson Extrapolation
• lead to super-convergence
• guide the implementation of boundary conditions
• help in the analysis of methods for non-linear problems

• Numerical artifacts (non-standard errors) can be present

• The process of finding the structure and order of errors can be
called Asymptotic Error Analysis. Needs smooth solutions and
regular grids.

• Historical examples: Romberg Integration and Cubic Splines

• New result: a numerical artifact from an idealized adaptive
grid with hanging nodes.
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Trapezoidal Rule

• Trapezoidal Rule Th approximation to∫ b
a f (x)dx is the sum of areas of red

trapezoids.

• Widths h = (b − a)/N where N is the
number of sub-intervals.

• Error bound∣∣∣∣∫ b

a
f (x)dx − Th

∣∣∣∣ ≤ (b − a)

12
Kh2

where K = max |f ′′|
• Second order convergence.
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Proof of Error Bound-I

• Consider a subinterval x ∈ [0, h].

• Let L(x) be linear interpolation on this subinterval and
g(x) = f (x)− L(x), so g(0) = g(h) = 0.

• The error E of trapezoidal rule on this subinterval is

E =

∫ h

0
g(x)dx

• Integrate by parts twice

E = −
∫ h

0
(x − h/2)g ′(x)dx

=
1

2

∫ h

0
(x2 − xh)g ′′(x)dx =

1

2

∫ h

0
(x2 − xh)f ′′(x)dx
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Proof of Error Bound-II

Subinterval E = 1
2

∫ h
0 (x2 − xh)f ′′(x)dx

|E | ≤ K

2

∫ h

0
(xh − x2)dx =

Kh3

12
.

Summing over N = (b − a)/h subintervals gives the result

|I − Th| ≤
(b − a)

12
Kh2
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Trapezoidal Rule Applied

Trapezoidal Rule applied to the integral I =
∫ 1
0 sin xdx

h I − Th

1/2 0.0096
1/4 0.0024
1/8 0.00060

1/16 0.00015
1/32 0.00004

Not only is

|I − Th| ≤
(b − a)

12
Kh2

but

lim
h→0

I − Th

h2

exists. There is regularity in the error that can be exploited.
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Error Analysis of Trapezoidal Rule-I

• We had

|E | ≤ Kh3

12
⇒ |I − Th| ≤

(b − a)

12
Kh2

• but with a bit more work it can be shown that

E = −f ′′aveh
3/12 + O(h5)⇒

I − Th = −(b − a)

12
Ch2 + O(h4)

where C is average value of f ′′ on the subinterval.

• with more work the error in Trapezoidal Rule can be written
as a series of regular terms with even powers of h
(Euler-McLaurin Formula).
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Error Analysis of Trapezoidal Rule-II

Th = I +
(b − a)

12
Ch2 + O(h4)

• This error regularity justifies Richardson extrapolation

I = (
4

3
Th/2 −

1

3
Th) + O(h4)

• The O(h4) error above is regular and so can also be
eliminated by extrapolation. Repeated application of this idea
is the Romberg method.
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Interesting Facts

• Richardson extrapolation of the Trapezoidal Rule is Simpson’s
Rule

• Trapezoidal and Midpoint Rules are spectrally accurate for
integrals of periodic functions over their period
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Cubic Splines

• Given smooth f (x) on [0,1], spacing h = 1/N, and data
ai = f (ih) for i = 0, . . .N the standard cubic spline fit is a C1

piecewise cubic interpolation.
• Cubic interpolation on each sub-interval for given values and

second derivative values ci at the end points is fourth order
accurate.

• If the second derivative values are only accurate to second
order, the cubic approximation is still fourth order accurate.

• For C1 continuity,

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)
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Cubic Splines - Periodic Analysis

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

In this case, c has a regular asymptotic error expansion

c = f ′′ + h2(
1

12
− 1

6
)f ′′′′ + . . .

(the fact that ci−1 + ci+1 = 2ci + h2c ′′ + . . . is used). Since the
c ’s are second order accurate, the cubic spline approximation is
fourth order accurate.

Notes:

• The earliest convergence proof for splines is in this equally
spaced, periodic setting Ahlberg and Nilson, “Convergence
properties of the spline fit”, J. SIAM, 1963

• Lucas, “Asymptotic expansions for interpolating periodic
splines,” SINUM, 1982.
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Cubic Splines - Non-Periodic Case

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

In the non-periodic case, additional conditions are needed for the
end values c0 and cN :

natural: c0 = 0, O(1)

derivative: 2c0 + c1 = 6
h2 (a1 − a0)− 3

h f
′(0), O(h2)

not a knot: c0 − 2c1 + c2 = 0, O(h2)

First convergence proof for “derivative” conditions Birkhoff and
DeBoor, “Error Bounds for Spline Interpolation”, J Math and
Mech, 1964.
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Cubic Splines - Numerical Boundary Layer

ci−1 + 4ci + ci+1 =
6

h2
(ai+1 − 2ai + ai−1)

No regular error can match the natural boundary condition c0 = 0.
However, note that

1 + 4κ+ κ2 = 0

has a root κ ≈ −0.268.

Error Expansion:

ci = f ′′(ih)− h2
1

6
f ′′′′(ih)− f ′′(0)κi . . .

The new term is a numerical boundary layer. In this case, the
spline fit will be second order near the ends of the interval and
fourth order in the interior. Reference?
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Cubic Splines - Computation
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More History

• Strang, “Accurate Partial Differential Methods II. Non-linear
Problems,” Numerische Mathematik, 1964

• Goodman, Hou and Lowengrub, “Convergence of the Point
Vortex Method for the 2-D Euler Equations,” Comm. Pure
Appl. Math, 1990

• E and Liu, “Projection Method I: Convergence and Numerical
Boundary Layers,” SINUM, 1995
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1D Boundary Value Problem
Simple boundary value problem for u(x):

u′′ − u = f with u(0) = 0 and u(1) = 0

with f given and smooth.

Theory: Unique solution u ∈ C k+2 for every f ∈ C k .

• N subintervals, spacing h = 1/N.

• Cell-Centred Finite Difference approximations
Uj ≈ u((j − 1/2)h, j = 0 . . .N + 1.

N=10, h=1/10x=0 x=1

j=0
ghost point

j=N+1

ghost point
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Uniform Grid
Scheme

u′′ − u = f with u(0) = 0 and u(1) = 0

• Finite Difference approximation for interior grid points

Uj−1 − 2Uj + Uj+1

h2
− Uj = f (jh)

truncation error h2u′′′′(jh)/12 + O(h4).

• Linear Interpolation of the boundary conditions

U0 + U1

2
= 0

truncation error h2u′′(0)/8 + O(h4).

Lax Equivalence Theorem: A stable, consistent scheme converges
with the order of its truncation error.
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Uniform Grid
Computational Results

Note that: the computed U = u + h2u(2) + O(h4) with u(2) a
smooth function of x . This is an asymptotic error expansion for U
with only regular terms (no artifacts).
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Uniform Grid
Asymptotic error expansion

U = u + h2v(x) + O(h4)

Uj−1 − 2Uj + Uj+1

h2
− Uj = f (jh) + h2u′′′′(jh)/12 + O(h4)

U0 + U1

2
= h2u′′(0)/8 + O(h4)

Match terms at O(h2):

v ′′ − v = u′′′′/12 with v(0) = u′′(0)/8 and v(1) = u′′(1)/8

Error solves the original DE but with truncation error data.
Note: v is just a theoretical tool. Justifies full order convergence of
derivative approximations (super-convergence):

(Uj+1 − Uj−1)/(2h) = ux (jh) + O(h2)
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Uniform Grid
Be careful on interpreting BC accuracy

At the boundary we have

U0 − 2U1 + U2

h2
− Uj = f (0) and

U0 + U1

2
= 0

These can be combined to give

−3U1 + U2

h2
− Uj = f (0)

which is not consistent (errors do not → 0 as h→ 0).

Interpret BC accuracy in discrete approximations of the original
accuracy
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1D Partially Refined Grid

• Refine the grid in the right half of the interval by a factor of 2.

• Ghost points at the refinement interface are related to grid
values by linear interpolation/extrapolation.

• Second order convergence is seen in the solution.

• The computed U has a piecewise regular error expansion.
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1D Partially Refined Grid Analysis

• Linear interpolation U∗B = 2
3UA + 1

3UB

• Linear extrapolation U∗A = −1
3UA + 4

3UB

• Determine the accuracy at which the “interface” conditions
[u] = 0 and [u′] = 0 are approximated.

• The conditions above can be rewritten as

(UA + U∗A)/2 = (UB + U∗B)/2

(U∗A − UA)/h = (UB − U∗B)/(h/2)

so are second order approximations of the interface conditions.
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Piecewise Regular Grids

• Computations on regular grids have many advantages.

• To retain some of the advantages but allow adaptivity,
refinement in regular blocks is often done.

Clinton Groth, University of Toronto
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Idealized Piecewise Regular Grid

Consider the idealized setting of a coarse grid and fine grid with a
straight interface:
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Problem and Discretization
• Consider the problem ∆u = f .
• The grid spacing is h (coarse) and h/2 (fine).
• The discrete approximation is cell-centred, denoted by U.
• Away from the interface, a five point stencil approximation is

used.
• At the interface, ghost points are introduced, related to grid

points by linear extrapolation.



UBC IAM Overview Some History 1D BVP 2D Elliptic Summary

Analysis of Piecewise Regular Grid-II

• The ghost point extrapolation is equivalent to

1

4
(UA + UA∗ + UB + UB∗) =

1

2
(UC + UC∗)

1

h
(UA − UA∗ + UB − UB∗) =

1

h
(UC∗ − UC∗)

(UA − UB − UA∗ + UB∗) = 0

• The first two conditions are second order approximations of
the “interface” conditions [u] = 0 and [∂u/∂n] = 0.

• They contribute to the second order regular errors of the
scheme (different on either side of the grid interface).
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Analysis of Piecewise Regular Grid-III

(UA − UB − UA∗ + UB∗) = 0

• This is satisfied to second order by the exact solution, error
h2uxy/4.

• Note that this only involves fine grid points.

• Expect a parity difference between fine grid solutions at the
interface.

• This results in a numerical artifact of the form

h2A(y)(−1)jκi

where (i , j) is the fine grid index and κ ≈ 0.172.

• This is a numerical boundary layer on the fine grid side that
alternates in sign between vertically adjacent points.
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Piecewise Regular Grid - Analysis Summary

• Coarse grid has regular error Ucoarse = u + h2ecoarse + . . .

• Fine grid has regular error and the artifact

Ufine = u + h2efine + h2
uxy (0, y)

8(1− κ)
(−1)jκi + · · ·

• Artifact causes loss of convergence in D2,yU and D2,xU on
the fine grid side at the interface.
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Additional Discussion

hqA(y)(−1)jκi

• This artifact is present in all schemes (FE, FD, FV) on the
grid, although the q may vary.

• Determinant condition, satisfied for stable schemes.

• For variable coefficient elliptic problems, κ(y) smooth.
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Summary

• Asymptotic error analysis can be used to describe regular
errors and numerical artifacts in finite difference methods and
other schemes on regular meshes.

• Historical examples of Romberg integration and spline
interpolation were given.

• Asymptotic error analysis can be used to help understand the
accuracy of different implementations of boundary and
interface conditions.

• A new result describing the errors in methods for elliptic
problems on piecewise regular grids with hanging nodes was
given.
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