Asymptotic Error Analysis

Brian Wetton

Mathematics Department, UBC www.math.ubc.ca/~wetton

CRM CAMP Seminar, October 18, 2018

Institute of Applied Mathematics

University of British Columbia

- Faculty participation from many departments.
- Interdisciplinary graduate programme.

Overview of the Talk

- Errors from computational methods using regular grids to compute smooth solutions have additional structure.
- This structure can
- allow Richardson Extrapolation
- lead to super-convergence
- guide the implementation of boundary conditions
- help in the analysis of methods for non-linear problems
- Numerical artifacts (non-standard errors) can be present
- The process of finding the structure and order of errors can be called Asymptotic Error Analysis. Needs smooth solutions and regular grids.
- Historical examples: Romberg Integration and Cubic Splines
- New result: a numerical artifact from an idealized adaptive grid with hanging nodes.

Trapezoidal Rule

- Trapezoidal Rule T_{h} approximation to $\int_{a}^{b} f(x) d x$ is the sum of areas of red trapezoids.
- Widths $h=(b-a) / N$ where N is the number of sub-intervals.
- Error bound

$$
\left|\int_{a}^{b} f(x) d x-T_{h}\right| \leq \frac{(b-a)}{12} K h^{2}
$$

where $K=\max \left|f^{\prime \prime}\right|$

- Second order convergence.

Proof of Error Bound-I

- Consider a subinterval $x \in[0, h]$.
- Let $L(x)$ be linear interpolation on this subinterval and $g(x)=f(x)-L(x)$, so $g(0)=g(h)=0$.
- The error E of trapezoidal rule on this subinterval is

$$
E=\int_{0}^{h} g(x) d x
$$

- Integrate by parts twice

$$
\begin{aligned}
E & =-\int_{0}^{h}(x-h / 2) g^{\prime}(x) d x \\
& =\frac{1}{2} \int_{0}^{h}\left(x^{2}-x h\right) g^{\prime \prime}(x) d x=\frac{1}{2} \int_{0}^{h}\left(x^{2}-x h\right) f^{\prime \prime}(x) d x
\end{aligned}
$$

Proof of Error Bound-II

Subinterval $E=\frac{1}{2} \int_{0}^{h}\left(x^{2}-x h\right) f^{\prime \prime}(x) d x$

$$
|E| \leq \frac{K}{2} \int_{0}^{h}\left(x h-x^{2}\right) d x=\frac{K h^{3}}{12}
$$

Summing over $N=(b-a) / h$ subintervals gives the result

$$
\left|I-T_{h}\right| \leq \frac{(b-a)}{12} K h^{2}
$$

Trapezoidal Rule Applied

Trapezoidal Rule applied to the integral $I=\int_{0}^{1} \sin x d x$

h	$I-T_{h}$
$1 / 2$	0.0096
$1 / 4$	0.0024
$1 / 8$	0.00060
$1 / 16$	0.00015
$1 / 32$	0.00004

Not only is

$$
\left|I-T_{h}\right| \leq \frac{(b-a)}{12} K h^{2}
$$

but

$$
\lim _{h \rightarrow 0} \frac{l-T_{h}}{h^{2}}
$$

exists. There is regularity in the error that can be exploited.

Error Analysis of Trapezoidal Rule-I

- We had

$$
|E| \leq \frac{K h^{3}}{12} \Rightarrow\left|I-T_{h}\right| \leq \frac{(b-a)}{12} K h^{2}
$$

- but with a bit more work it can be shown that

$$
\begin{aligned}
E & =-f_{\text {ave }}^{\prime \prime} h^{3} / 12+O\left(h^{5}\right) \Rightarrow \\
I-T_{h} & =-\frac{(b-a)}{12} C h^{2}+O\left(h^{4}\right)
\end{aligned}
$$

where C is average value of $f^{\prime \prime}$ on the subinterval.

- with more work the error in Trapezoidal Rule can be written as a series of regular terms with even powers of h (Euler-McLaurin Formula).

Error Analysis of Trapezoidal Rule-II

$$
T_{h}=I+\frac{(b-a)}{12} C h^{2}+O\left(h^{4}\right)
$$

- This error regularity justifies Richardson extrapolation

$$
I=\left(\frac{4}{3} T_{h / 2}-\frac{1}{3} T_{h}\right)+O\left(h^{4}\right)
$$

- The $O\left(h^{4}\right)$ error above is regular and so can also be eliminated by extrapolation. Repeated application of this idea is the Romberg method.

Interesting Facts

- Richardson extrapolation of the Trapezoidal Rule is Simpson's Rule
- Trapezoidal and Midpoint Rules are spectrally accurate for integrals of periodic functions over their period

Cubic Splines

- Given smooth $f(x)$ on $[0,1]$, spacing $h=1 / N$, and data $a_{i}=f(i h)$ for $i=0, \ldots N$ the standard cubic spline fit is a C_{1} piecewise cubic interpolation.
- Cubic interpolation on each sub-interval for given values and second derivative values c_{i} at the end points is fourth order accurate.
- If the second derivative values are only accurate to second order, the cubic approximation is still fourth order accurate.
- For C_{1} continuity,

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

Cubic Splines - Periodic Analysis

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

In this case, c has a regular asymptotic error expansion

$$
c=f^{\prime \prime}+h^{2}\left(\frac{1}{12}-\frac{1}{6}\right) f^{\prime \prime \prime \prime}+\ldots
$$

(the fact that $c_{i-1}+c_{i+1}=2 c_{i}+h^{2} c^{\prime \prime}+\ldots$ is used). Since the $c^{\prime} s$ are second order accurate, the cubic spline approximation is fourth order accurate.

Notes:

- The earliest convergence proof for splines is in this equally spaced, periodic setting Ahlberg and Nilson, "Convergence properties of the spline fit", J. SIAM, 1963
- Lucas, "Asymptotic expansions for interpolating periodic splines," SINUM, 1982.

Cubic Splines - Non-Periodic Case

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

In the non-periodic case, additional conditions are needed for the end values c_{0} and c_{N} :
natural: $c_{0}=0, O(1)$
derivative: $2 c_{0}+c_{1}=\frac{6}{h^{2}}\left(a_{1}-a_{0}\right)-\frac{3}{h} f^{\prime}(0), O\left(h^{2}\right)$
not a knot: $c_{0}-2 c_{1}+c_{2}=0, O\left(h^{2}\right)$
First convergence proof for "derivative" conditions Birkhoff and DeBoor, "Error Bounds for Spline Interpolation", J Math and Mech, 1964.

Cubic Splines - Numerical Boundary Layer

$$
c_{i-1}+4 c_{i}+c_{i+1}=\frac{6}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right)
$$

No regular error can match the natural boundary condition $c_{0}=0$. However, note that

$$
1+4 \kappa+\kappa^{2}=0
$$

has a root $\kappa \approx-0.268$.
Error Expansion:

$$
c_{i}=f^{\prime \prime}(i h)-h^{2} \frac{1}{6} f^{\prime \prime \prime \prime}(i h)-f^{\prime \prime}(0) \kappa^{i} \ldots
$$

The new term is a numerical boundary layer. In this case, the spline fit will be second order near the ends of the interval and fourth order in the interior. Reference?

Cubic Splines - Computation

More History

- Strang, "Accurate Partial Differential Methods II. Non-linear Problems," Numerische Mathematik, 1964
- Goodman, Hou and Lowengrub, "Convergence of the Point Vortex Method for the 2-D Euler Equations," Comm. Pure Appl. Math, 1990
- E and Liu, "Projection Method I: Convergence and Numerical Boundary Layers," SINUM, 1995

1D Boundary Value Problem

Simple boundary value problem for $u(x)$:

$$
u^{\prime \prime}-u=f \quad \text { with } u(0)=0 \text { and } u(1)=0
$$

with f given and smooth.
Theory: Unique solution $u \in C^{k+2}$ for every $f \in C^{k}$.

- N subintervals, spacing $h=1 / N$.
- Cell-Centred Finite Difference approximations $U_{j} \approx u((j-1 / 2) h, j=0 \ldots N+1$. $\mathrm{x}=0 \quad \mathrm{~N}=10, \mathrm{~h}=1 / 10 \quad \mathrm{x}=1$

Uniform Grid

Scheme

$$
u^{\prime \prime}-u=f \quad \text { with } u(0)=0 \text { and } u(1)=0
$$

- Finite Difference approximation for interior grid points

$$
\frac{U_{j-1}-2 U_{j}+U_{j+1}}{h^{2}}-U_{j}=f(j h)
$$

truncation error $h^{2} u^{\prime \prime \prime \prime}(j h) / 12+O\left(h^{4}\right)$.

- Linear Interpolation of the boundary conditions

$$
\frac{U_{0}+U_{1}}{2}=0
$$

truncation error $h^{2} u^{\prime \prime}(0) / 8+O\left(h^{4}\right)$.
Lax Equivalence Theorem: A stable, consistent scheme converges with the order of its truncation error.

Uniform Grid

Computational Results

Note that: the computed $U=u+h^{2} u^{(2)}+O\left(h^{4}\right)$ with $u^{(2)}$ a smooth function of x. This is an asymptotic error expansion for U with only regular terms (no artifacts).

Uniform Grid

Asymptotic error expansion
$U=u+h^{2} v(x)+O\left(h^{4}\right)$

$$
\begin{aligned}
\frac{U_{j-1}-2 U_{j}+U_{j+1}}{h^{2}}-U_{j} & =f(j h)+h^{2} u^{\prime \prime \prime \prime}(j h) / 12+O\left(h^{4}\right) \\
\frac{U_{0}+U_{1}}{2} & =h^{2} u^{\prime \prime}(0) / 8+O\left(h^{4}\right)
\end{aligned}
$$

Match terms at $O\left(h^{2}\right)$:

$$
v^{\prime \prime}-v=u^{\prime \prime \prime \prime} / 12 \text { with } v(0)=u^{\prime \prime}(0) / 8 \text { and } v(1)=u^{\prime \prime}(1) / 8
$$

Error solves the original DE but with truncation error data. Note: v is just a theoretical tool. Justifies full order convergence of derivative approximations (super-convergence):

$$
\left(U_{j+1}-U_{j-1}\right) /(2 h)=u_{x}(j h)+O\left(h^{2}\right)
$$

Uniform Grid

Be careful on interpreting BC accuracy

At the boundary we have

$$
\frac{U_{0}-2 U_{1}+U_{2}}{h^{2}}-U_{j}=f(0) \text { and } \frac{U_{0}+U_{1}}{2}=0
$$

These can be combined to give

$$
\frac{-3 U_{1}+U_{2}}{h^{2}}-U_{j}=f(0)
$$

which is not consistent (errors do not $\rightarrow 0$ as $h \rightarrow 0$).
Interpret BC accuracy in discrete approximations of the original accuracy

1D Partially Refined Grid

- Refine the grid in the right half of the interval by a factor of 2 .
- Ghost points at the refinement interface are related to grid values by linear interpolation/extrapolation.
- Second order convergence is seen in the solution.
- The computed U has a piecewise regular error expansion.

1D Partially Refined Grid Analysis

- Linear interpolation $U_{B}^{*}=\frac{2}{3} U_{A}+\frac{1}{3} U_{B}$
- Linear extrapolation $U_{A}^{*}=-\frac{1}{3} U_{A}+\frac{4}{3} U_{B}$
- Determine the accuracy at which the "interface" conditions $[u]=0$ and $\left[u^{\prime}\right]=0$ are approximated.
- The conditions above can be rewritten as

$$
\begin{aligned}
& \left(U_{A}+U_{A}^{*}\right) / 2=\left(U_{B}+U_{B}^{*}\right) / 2 \\
& \left(U_{A}^{*}-U_{A}\right) / h=\left(U_{B}-U_{B}^{*}\right) /(h / 2)
\end{aligned}
$$

so are second order approximations of the interface conditions.

Piecewise Regular Grids

- Computations on regular grids have many advantages.
- To retain some of the advantages but allow adaptivity, refinement in regular blocks is often done.

Clinton Groth, University of Toronto

Idealized Piecewise Regular Grid

Consider the idealized setting of a coarse grid and fine grid with a straight interface:

Problem and Discretization

- Consider the problem $\Delta u=f$.
- The grid spacing is h (coarse) and $h / 2$ (fine).
- The discrete approximation is cell-centred, denoted by U.
- Away from the interface, a five point stencil approximation is used.
- At the interface, ghost points are introduced, related to grid points by linear extrapolation.

Analysis of Piecewise Regular Grid-II

- The ghost point extrapolation is equivalent to

$$
\begin{aligned}
\frac{1}{4}\left(U_{A}+U_{A *}+U_{B}+U_{B *}\right) & =\frac{1}{2}\left(U_{C}+U_{C *}\right) \\
\frac{1}{h}\left(U_{A}-U_{A *}+U_{B}-U_{B *}\right) & =\frac{1}{h}\left(U_{C *}-U_{C *}\right) \\
\left(U_{A}-U_{B}-U_{A *}+U_{B *}\right) & =0
\end{aligned}
$$

- The first two conditions are second order approximations of the "interface" conditions $[u]=0$ and $[\partial u / \partial n]=0$.
- They contribute to the second order regular errors of the scheme (different on either side of the grid interface).

Analysis of Piecewise Regular Grid-III

$$
\left(U_{A}-U_{B}-U_{A *}+U_{B *}\right)=0
$$

- This is satisfied to second order by the exact solution, error $h^{2} u_{x y} / 4$.
- Note that this only involves fine grid points.
- Expect a parity difference between fine grid solutions at the interface.
- This results in a numerical artifact of the form

$$
h^{2} A(y)(-1)^{j} \kappa^{i}
$$

where (i, j) is the fine grid index and $\kappa \approx 0.172$.

- This is a numerical boundary layer on the fine grid side that alternates in sign between vertically adjacent points.

Piecewise Regular Grid - Analysis Summary

- Coarse grid has regular error $U_{\text {coarse }}=u+h^{2} e_{\text {coarse }}+\ldots$
- Fine grid has regular error and the artifact

$$
U_{\text {fine }}=u+h^{2} e_{\text {fine }}+h^{2} \frac{u_{x y}(0, y)}{8(1-\kappa)}(-1)^{j} \kappa^{i}+\cdots
$$

- Artifact causes loss of convergence in $D_{2, y} U$ and $D_{2, x} U$ on the fine grid side at the interface.

Additional Discussion

$$
h^{q} A(y)(-1)^{j} \kappa^{i}
$$

- This artifact is present in all schemes (FE, FD, FV) on the grid, although the q may vary.
- Determinant condition, satisfied for stable schemes.
- For variable coefficient elliptic problems, $\kappa(y)$ smooth.

Summary

- Asymptotic error analysis can be used to describe regular errors and numerical artifacts in finite difference methods and other schemes on regular meshes.
- Historical examples of Romberg integration and spline interpolation were given.
- Asymptotic error analysis can be used to help understand the accuracy of different implementations of boundary and interface conditions.
- A new result describing the errors in methods for elliptic problems on piecewise regular grids with hanging nodes was given.

