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Overview

• Allen Cahn Dynamics
• Time Stepping for AC:

• Fully Implicit and Energy Stable Schemes
• Consistency
• Adaptive Time Stepping
• Solving the Implicit Problems
• Benchmark Results

• Asymptotic Analysis of Fully Implicit Scheme and PCG for AC

• Cahn Hilliard Dynamics Accuracy and Benchmarks

Time Stepping Analysis: Cheng, Li, and Promislow. Including
some results by Xu, shown in green.

Numerical Framework: Christlieb, Jones, Promislow, Willoughby, in
JCP 257 193-215 (2014)

Benchmark Project: Church, Guo, Jimack, Madzvamuse,
Promislow, Wise, Yang, ongoing work.
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Allen Cahn Dynamics

u(x , t), 2π-periodic in x solves

ut = uxx − (u3 − u)/ε2

Allen and Cahn, Acta Metall 1979

• For discussion forget the diffusion term. AC is then an
autonomous ODE with fixed points u = ±1 (stable) and
u = 0 (unstable) at each space location

• solutions tend to u = ±1 in O(1/ε2) time: spinodal evolution

• with ε > 0 there is an interface of width O(ε) that is formed
between the two phases
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Allen Cahn Dynamics
Gamma Limit

ut = ∆u − (u3 − u)/ε2

• 1D steady state solution

u = tanh

(
x − x0

ε
√

2

)
• in higher dimensions, x0 is replaced by the curve between the

phases u = ±1 and x − x0 is replaced by a normal distance to
the curve

• in this case, the solution is approximate and the interface will
move in a slow time scale: ripening evolution

• higher order asymptotic terms can determine a motion law for
the interface: gamma limit

• For 2D & 3D AC curves move with curvature motion as ε→ 0
in an O(1) time scale.
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Allen Cahn Dynamics
Energy Gradient Flow

ut = ∆u −W ′(u)/ε2

W (u) =
1

4
(u2 − 1)2

• This equation is gradient flow on the energy

E =

∫ 2π

0

(
|∇u|2/2 + W (u)/ε2

)
dx

• This leads to a symmetric Jacobian matrix for the implicit
time steps of the discretization

• Movie
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Allen Cahn Dynamics
Details of Computational Results

The benchmark is the time the centre value changes sign.
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Fully Implicit and Energy Stable Schemes

ut = ∆u − (u3 − u)/ε2

Consider Spatially Continuous Semi-Discretization

FI Fully Implicit (Backward Euler):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un+1

]
)/ε2

ES Energy Stable (Eyre, Convex/Concave Splitting):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un

]
)/ε2

• ES schemes have desirable properties.

• FI schemes are asymptotically more accurate that ES.

• FI schemes are overall more efficient.
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Consistency – I
Asymptotic Solution:

u(x , t) ≈ tanh

(
dist(x , Γ)

ε
√

2

)
, so

∂nu

∂tn
= O(ε−n)

FI local error

1

2
k2utt = kO(k/ε2) consistent k = o(ε2).

ES

Un+1 = Un+k∆Un+1−k
[
(Un+1)3 − Un

]
)/ε2 = FI−k(Un+1−Un)/ε2

ES dominant local error term

k2ut/ε
2 = kO(k/ε3) consistent k = o(ε3).

ES is asymptotically less accurate than FI.
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Consistency – II
Asymptotic Consistency

Asymptotic Consistency: Identify the minimum p such that the
distinguished limit k = O(εp) of the numerical scheme is
consistent with the Gamma limit.

• p = 2 for FI

• p = 3 for ES
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Consistency – III
Large errors from splitting: second explanation

XLWB

Jinchao Xu, Li, Wu, Bousquet (arXiv preprint)
ES is equivalent to FI but with a decreased time step:

τ =
ε2k

ε2 + k

ES is equivalent to FI but with a decreased time step:

(Un+1 − Un)/k = ∆Un+1 −
[
Un+1

]2
/ε2 + Un/ε2 ± Un+1/ε2

Equivalent to FI with 1/τ = 1/k + 1/ε2.
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Consistency – IV
Large errors from splitting: simple explanation

Consider the Dahlquist test problem for u(t):

u̇ = −γu

with γ = O(1) and γ = α− β with α, β size O(M), M large.
Consider handling the α term implicitly and the β term explicitly
(IMEX scheme).
Now compare over one time step:

Exact: e−γk ≈ 1− γk + 1
2γ

2k2

BE: 1/(1 + γk) ≈ 1− γk + γ2k2, error γ2k2/2.

IMEX: (1 + βk)/(1 + αk) ≈ 1− γk + αγk2, error γαk2.

With γ = O(1), and α = O(M), the IMEX scheme is much less
accurate that the fully implicit scheme, although they are the same
order.
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Consistency – IV
Adaptive Time Stepping

Let σ be the allowable local error per time step.

FI:

• k = O(
√
σε)

• M = O(1/k) = O(1/(
√
σε))

• Overall accuracy O(Mσ) = O(
√
σ/ε)

ES:

• k = O(
√
σε3/2)

• M = O(1/k) = O(1/(
√
σε3/2))

• Overall accuracy O(Mσ) = O(
√
σ/ε3/2)

ES takes more time steps and gives less accurate results.
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PCG solution of the implicit system

G(U) := U − k
[
∆U − (U3 − U)/ε2

]
− U(n) = 0

• Newton’s method with symmetric Frechet derivative

J = I − k(∆− Λ2/ε
2 + I/ε2)

where Λ2 is pointwise multiplication by 3U2.

• Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

Q = I − k(∆− 2/ε2)

• J and Q−1 can be implemented easily in a PCG solve of a
Newton step with a spectral spatial discretization.
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AC Numerical Results
Fully Implicit

ε = 0.2, σ varied

σ M CG transition

1e-4 717 5,348 [7.46] 1.924
1e-5 2,225 (3.10) 9,448 [4.24] 1.926
1e-6 7,010 (3.15) 23,017 [3.28] 1.926

Validates M = O(
√
σ) for constant ε. (

√
10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG transition

0.2 717 5,348 [7.46] 1.924
0.1 1,291 (1.80) 12,354 [9.57] 1.976

0.05 2,412 (1.87) 27,782 [11.52] 1.992
0.025 4,630 (1.92) 64,884 [14.01] 1.998

Validates M = O(1/ε) for constant σ. Consistent with condition
number dependent (increasing) only on C when k = Cε2.
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AC Numerical Results
Energy Stable

ε = 0.2, σ varied

σ M CG transition

1e-4 2,350 14,856 [6.32] 1.974
1e-5 7,351 (3.12) 28,263 [3.85] 1.941
1e-6 23,172 (3.15) 68,148 [2.94] 1.931

Validates M = O(
√
σ) for constant ε, (

√
10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG transition

0.2 2,350 14,856 [6.32] 1.974
0.1 6,463 (2.75) 44,717 [6.92] 2.046

0.05 18,218 (2.83) 143,416 [7.87] 2.092
0.025 52,595 (2.89) 497,846 [9.47] 2.139

Validates M = O(1/ε3/2) for constant σ, (23/2 ≈ 2.83), and
reduced accuracy as ε→ 0.
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FI Asymptotics and Energy Stability

Theorem
Under the scaling k = Cε2 with C < 1 there is an asymptotic
solution to the FI problem, locally unique, that decreases energy.

XLWB

Theorem
Under the scaling k = Cε2 with C < 1 the FI problem is
convex with unique solution that decreases the energy.

We have some preliminary ideas that extends this result to
asymptotically larger time steps

Note that in this context, ES artificially decreases the time step so
that it is equivalent to FI with k < ε2.
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Asymptotic Solution - I

(Un+1 − Un)/k = ∆Un+1 − f (Un+1)/ε2

Assume that k = Cε2 and that Un is a curve dressed with a
homoclinic profile:

• There is a curve x(s) with normal n̂ parametrized by arc
length.

• Change coordinates to (s, z) : x = xn+1(s) + εzn̂

• Un ≈ g(z) with g(z) = tanh(z/
√

2)

Under these assumptions it is asymptotically consistent that Un+1

has the same form. We write

Un = g(z − εv(s)), g based here at the n + 1 curve
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Asymptotic Solution - II

(Un+1 − Un)/(Cε2) = ∆Un+1 − f (Un+1)/ε2

Un+1 = g(z) and Un = g(z − εv(s))

∆ =
1

ε2
∂2

∂z2
+
κ

ε

∂

∂z
to highest order

• Highest order O(1/ε2) terms cancel by choice of g .

• Next order terms are( v
C
− κ
)
g ′ = ⊥ to g ′

• so v = Cκ. Actual curve normal motion is v scaled by ε2,
since k = Cε2 we have an approximation of curvature motion.

• This discrete implicit curvature motion decreases curve length
and to leading order this decreases Energy.

• C is not restricted to be less than 1 in this argument.
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Condition Number of Q−1J

XLWB

Theorem
Under the scaling k = Cε2 with C < 1 the operator Q−1J
has condition number bounded by

κ <
1 + 2C

1− C

(increasing function of C as observed in the numerical
benchmark).

In the computations, C > 1 also exhibit good PCG convergence
when the adaptive time steps direct the size of k .
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Cahn-Hilliard Dynamics

ut = −∆
(
ε∆u − (u3 − u)/ε

)
Cahn and Hilliard, J Chem Phys 1958

• Gradient flow on the same energy a AC but in the H−1 norm
that has inner product

(u, v)H−1 := (u,∆−1v)

• Conserves the mass of the two phases

• The gamma limit is nonlocal, Mullins-Sekerka flow, in O(1)
time scale.
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Cahn Hilliard Dynamics
Mullins-Sekerka Flow

• Mullins and Sekerka 1963

• Sharp interface limit of Cahn Hilliard equations, Pego 1989
and Alikakos, Bates, and Chen 1994
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Consistency and Stability
2D Cahn Hilliard

Asymptotic Consistency: Identify the minimum p such that the
distinguished limit k = O(εp) of the numerical scheme is
consistent with the Gamma limit.

• p = 2, M = O(1/(
√
σε)), error O(

√
σ/ε) for FI

• p = 4, M = O(1/(
√
σε2)), error O(

√
σ/ε2) for ES

XLWB

Theorem
Under the scaling k = Cε3 with C < 4 the FI problem is
convex with unique solution that decreases the energy.

We observe k = O(ε2) computations in the meta-stable regime.



UBC IAM Overview AC Consistency Stability CH Summary

Cahn-Hilliard Dynamics
2D Benchmark Problem

Benchmark is the time at which the values at (π, π) changes sign.
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CH 2D Benchmark Numerical Results
ε varied, σ = 1e − 4

FI:
ε M CG T

0.1 1,156 24,871 [21.5] 2.13
0.05 2,044 (1.77) 66,559 [32.6] 2.34

0.025 3,754 (1.84) 200,067 [53.3] 2.44

Validates M = O(1/ε) for constant σ. Evidence that condition
number increases with ε.

ES:
ε M CG T

0.1 12,781 190,864 [14.9] 2.15
0.05 52,783 (4.13) 938,548 [17.7] 2.36

0.015 217,465 (4.11) 4,540,748 [20.1] 2.47

Evidence of rapid loss of accuracy and efficiency as ε→ 0.
Validates M = O(1/ε2).
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Cahn-Hilliard Dynamics
1D Benchmark Problem
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Benchmark is the time the centre value changes sign.

Carr and Pego (1989) In 1D, the dynamics of a ripening state with
M transition layers is exponentially slow (in ε).
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CH 1D Benchmark Problem
Performance Comparison ε = 0.18

FI – Asymptotics show condition number O(k/ε):
σ time steps ripening time total CG

1e-4 848 8180 19,105
1e-5 2580 (3.04) 8273 39,942
1e-6 8072 (3.13) 8304 87,563
1e-7 25446 (3.15) 8314 227,799

ES – exponentially (in ε) less accurate than FI:
σ time steps ripening time total CG

1e-4 70,517 13147 1,039,676
1e-5 202,549 (2.87) 9582 2,368,051
1e-6 618,431(3.06) 8695 5,205,739
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Summary

1. Analytic, Asymptotic, and Numerical results that show FI is
energy stable with time steps chosen appropriately to the
dynamics.

2. Evidence that FI is more efficient than widely used ES
methods for AC and CH problems.
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