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Overview of the Talk

• model problem and computed solutions

• two simpler, related problems

• revisiting the oxygen depletion problem

• computational methods for the two phase flow problem

• discussion
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Model Problem
cartoon model

Heat and water transport in a porous medium:
u: temperature

v : water vapour

w : water liquid

Γ: condensation rate

S(u): vapour saturation (we take S(u) = eu).

Equations:
ut = ∆u + Γ

vt = ∇ · (D(u)∇v)− Γ (we take D(u) = 2(1 + u)2).

wt = ∆w + Γ

Motivation: transport in fuel cell electrodes and baking bread
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Model Problem
picture: moving boundary
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Model Problem
two zone formulation

Vapour only region (w ≡ 0):
ut = ∆u

vt = ∇ · (D(u)∇v)

Two phase zone region (v = S(u)):
S ′(u)ut + wt = ∇ · (S ′(u)D(u)∇u) + ∆w

(1 + S ′(u))ut = ∇ · ((1 + S ′(u)D(u))∇u)

Interface conditions:

1. w = 0 (two phase)

2. [u] = 0

3. v = S(u) (vapour)

4. [∂u/∂n] = ∂w/∂n (heat flux evaporates water flux)

5. [D(u)∂v/∂n] = ∂w/∂n (water conserved)
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Model Problem
two zone formulation: discussion

• Count check: four component second order parabolic
equations, five mixed Dirichlet/Neumann conditions.

• There can be a condensation delta function at the free
boundary.

• There is no Stefan velocity. This is an “implicit” free
boundary value problem, Crank, Free and Moving Boundary
Problems, 1984.

• Earlier work, Donaldson and W, IMAJAM, 2006 and Chen
and W, IMAJAM, 2008 relates to the local problem at steady
state:

• algebraic criteria for linear well posed-ness to 2D perturbations
for given far field fluxes.

• identification of artificial Stefan velocities to reach steady state
with good numerical properties.
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Model Problem
1D computation (using the M2 method)
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Model Problem
2D computation (using the split-step method)

Water contours, t=0.1000
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Two Simpler Problems
Level sets of the heat equation

Consider an interface with the variable u on either side of an
interface that satisfies

ut = ∆u

on either side of the interface. Consider “implicit” moving
boundary conditions

1. u+ = 0

2. u− = 0

3. [∂u/∂n] = 0

• The interface is just the zero level set of solutions of the heat
equation.

• The interface will be regular (for short time) if the normal
derivative is nonzero at all points of the interface.

• Level sets of harmonic functions in 3D can be irregular



Overview Model Problem Simpler Problems Oxygen Depletion 2-Phase Flow Summary

Two Simpler Problems
The oxygen depletion problem

• Early literature summarized in Crank

• Bergers, Ciment, Rogers, SINUM, 1975 [BCR]. Points to
some theory about the problem that was never published.

• Movie
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Oxygen Depletion Problem
scheme one: DAE

• Map x ∈ [0, s(t)] to y ∈ [0, 1], x = ys.

• ct = xxx − 1 becomes

s2ct − ysṡcy = cyy − s2

with boundary conditions cy (0) = c(1) = cy (1) = 0.

• Method of lines on a cell centred grid, h = 1/N, with ghost
points:

s2Ċj − ysṡD1Cj = D2Cj − s2 interior points

with C1 − C0 = CN + CN+1 = CN+1 − CN = 0.

• Index one DAE problem, use standard MATLAB time stepping
to get a high time accuracy solution, used as a benchmark for
the other schemes. No theory.
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Oxygen Depletion Problem
scheme two: status flag method

• Uses a fixed grid in x , based on Backward Euler time stepping
with time step k .

• Each grid point at each time step has a flag set to either A
(C > 0) or B (C = 0).

• Setting up the system for the next time step based on the flag
at grid j :

A: C ∗j − Cn
j = k(D2C

∗
j − 1)

B: C ∗j = 0.
• Then, the states are checked for every grid j :

• If A and C∗
j < 0 switch to B.

• If B and C n
j + k(D2C

∗
j − 1) > 0 switch to A.

• If there was a switch at any grid point, recompute C ∗,
otherwise accept Cn+1 = C ∗.

• First order convergence in time, O(k), to benchmark solution.
No theory.

• In practice, switching iterations always converge. No theory.
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Oxygen Depletion Problem
scheme three: split step

• Uses a fixed grid in x , based on Backward Euler time stepping
with time step k .

• Split Step:
• C∗

j − C n
j = kD2C

∗
j at all grid points, artificial far field

condition C∗
N = 0.

• C n+1
j = max(C∗

j − k , 0).

• Theory! [BCR] for the space and time continuous (heat
equation solve) version of the scheme.

• First order convergence in time, O(k), to benchmark solution.
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Oxygen Depletion Problem
scheme three: split step (continued)

Apply to the steady state problem c(x) = (x − 1)2/2, space
continuous:

C ∗ − C = kC ∗xx , C ∗(∞) = 0

C (x) = max(C ∗(x)− k , 0).

x < 1−
√
k : C ∗(x) = (1− x)2/2 + k/2,

C (x) = (1− x)2/2− k/2

x > 1−
√
k : C ∗(x) = ke−(x−1+

√
k),C (x) = 0
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Oxygen Depletion Problem
scheme three: split step 2D computations

Contour plotting in the 1970’s [BCR]:
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Two Phase Flow Model
scheme one: M2 method

ut = ∆u + Γ

vt = ∇ · (D(u)∇v)− Γ

wt = ∆w + Γ

v = S(u) when w > 0

Introduce total water ρ = v + w and “Enthalpy” Q = u + v :

ρt = ∇ · (D(u)∇v) + ∆w

Qt = ∇ · (D(u)∇v) + ∆u

Recover u, v and w from the “M2 map”:

• if ρ < S(Q − ρ), all vapour w = 0, v = ρ, u = Q − ρ.

• otherwise solve Q = u + S(u) for u, v = S(u), w = ρ− v .
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Two Phase Flow Model
scheme one: M2 method (discussion)

• M2 map approach proposed by Wang and Beckermann,
IJHMT, 1993.

• M2 map is continuous with derivative discontinuities.

• Computational convergence study Bridge and W, JCP, 2007,
on a more physical model with degenerate water diffusion. No
theory.

• Implemented on a fixed grid with Backward Euler time
stepping and the status flag approach.

• Status flag change at each Newton iteration. Status flag
iterations always converge. No theory.

• O(k) + O(hq) (1 < q < 2) convergence observed in ‖ · ‖1 on
the current model.

• Used as a benchmark for the other schemes below in 1D.
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Two Phase Flow Model
scheme two: split step

Variables u, v and w kept for every x . Solve

U∗ − Un = k∆U∗

V ∗ − V n = k∇ · (D(U∗)∇V ∗)
W ∗ −W n = k∆W ∗

Then add condensation locally (each x) with γ ≈ kΓ:

U = U∗ + γ

V = V ∗ − γ
W = W ∗ + γ

where γ = max(γ∗,−W ∗) and γ∗ solves

S(U∗ + γ∗) = V ∗ − γ∗
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Two Phase Flow Model
scheme two: split step (discussion)

• Temporal errors O(
√
k) observed computationally. No theory.

• At steady state, spatial continuous analysis of a related linear
problem shows O(

√
k) errors. Condensation delta function

approximated by width O(
√
k) exponentials.

• The 2D computation shown earlier is based on this
formulation.
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Two Phase Flow Model
scheme three: HLZ scheme

ut = ∆u + Γ, vt = ∇ · (D(u)∇v)− Γ, wt = ∆w + Γ

Introduce the regularization H � 1:

Γ =

{
0 if w = 0 and v < S(u)
H(v − S(u)) otherwise

• γ = max [(V n − S(Un)/(1 + 1/(kH)),−W n]

• W ∗ = W n + γ, W n+1 −W ∗ = k∆W n+1

• Un+1 − Un = γ + k∆W n+1

• V ∗ = V n − γ, V n+1 − V ∗ = k∇ · (D(Un+1)∇V n+1)
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Two Phase Flow Model
scheme three: HLZ scheme (discussion)

• Proposed by Huang, Lin and Zho, SIAP, 2007

• At steady state, spatial continuous analysis of a related linear
problem shows O(

√
k) + O(1/

√
H) errors. Condensation

delta function approximated by width O(
√
k) (vapour only)

and O(1/
√
H) (two phase) exponentials.

• Point-wise iterations converge to V = S(U) only when kH is
sufficiently small.

• With H = O(1/k), convergence of O(
√
k) observed

computationally.
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Summary

• Presented a collection of methods for two implicit free
boundary value problems with numerical evidence of
convergence.

• Lots of missing theory:
• Existence and regularity theory for the underlying problems
• Equivalence of the formulations
• Convergence of discretizations
• Convergence of the discrete status iterations

• Future work:
• Implement mapped domain technique for the condensation

problem to get a high accuracy reference solution.
• Connection to Augmented Lagrangian methods?
• Can every implicit free boundary value problem be written in a

status flag formulation, and/or as a split step method with
more components?
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