Overview

ary Ext

Numerical Methods for Geometric Motion

Brian Wetton Iain Moyles

Government of Canada Gouvernement du Canada

Vanier Canada Graduate Scholarships Bourses d'études supérieures du Canada Vanier

Mathematics Department, UBC www.math.ubc.ca/~wetton

Numerical Methods for PDEs on Surfaces, June 2017

Overview of the Talk

- Geometric Motion basics
- Comparison of numerical methods for local velocities (*i.e.* curvature motion). High level: historical.
- Extension to nonlocal velocities (generalized Mullins-Sekerka) New work: technical

Overview

nmary I

Geometric Motion Definition

Examples:

- $V = \kappa$ (curvature)
- $V = -\kappa_{ss}$ (surface diffusion)
- Mullins-Sekerka (nonlocal)
 Numerical Challenges:
 - Topological changes
 - Viscosity solutions
 - Networks with junctions

Applications:

- Materials Science
- Image processing
- Intrinsic Interest

Basic Discretization: Tracking

- Normal speed V "given".
- Track points as a discrete approximation, updating the point locations using a small time step.
- Tangential speed is arbitrary.
- There are other approaches with strengths and weaknesses, discussed in the next section.

Allen-Cahn \rightarrow Curvature Motion

$$u_t = \epsilon^2 \Delta u - W'(u), \qquad W'(u) = u^3 - u$$

Allen and Cahn 1979

- For discussion, consider $\epsilon = 0$
- A-C is then an autonomous ODE with fixed points u = ±1 (stable) and u = 0 (unstable) at each space location
- Solutions tend to $u = \pm 1$ in O(1) time
- With \(\epsilon > 0\) there is an interface of width O(\(\epsilon\)) that is formed between the two phases
- As $\epsilon \to 0$ the interface tends to a curve that moves with curvature motion in $O(1/\epsilon^2)$ time scale.
- Studying the limiting problem directly gives insight and is easier computationally.

ary Ex

Mullins-Sekerka Flow

- Mullins and Sekerka 1963
- Sharp interface limit of Cahn Hilliard equations, Pego 1989 and Alikakos, Bates, and Chen 1994

Summary

New Problem

- Limit of an activator-inhibitor reaction diffusion problem (Gierer-Meinhardt system with saturation)
- *u* is the inhibitor (global), *v* the activator (local to the curve)
- ${\mathcal G}$ and ${\mathcal H}$ involve the inner solution for the activator
- Moyles and Ward, Studies in Applied Math 2016

ary Ex

I: Level Set Methods

- Osher and Sethian 1988
- Γ described as the level set $\psi(x,t) = 0$
- Extend $V(\Gamma)$ smoothly to V(x)
- $\psi_t = -V |\nabla \psi|$ evolves all level sets with normal velocity V (Hamilton Jacobi equation).
- Curvature fits easily into this framework

$$\kappa = \nabla \cdot \left(\frac{\nabla \psi}{|\nabla \psi|} \right)$$

- Extensive literature on efficient implementations.
- V can come from other models.
- Sethian movie

Summary

Extras

Level Set Methods: Pros and Cons

Pros:

- Handles topological changes
- Computes viscosity solutions
- Easy extension to 3D
- Existing software
- Extended to curves on surfaces MacDonald, Ruuth

Cons:

- Difficult to get high accuracy
- Difficult to implement implicitly
- Cannot handle junctions

ummary

II: Convolution-Thresholding Methods.

- Ruuth 1998
- Let $\chi(t)$ be the characteristic set inside $\Gamma(t)$
- Solve $u_t = \Delta u$ with $u(x, 0) = \chi(t)$
- $\{x: u(x,k) > 1/2\}$ approximates $\chi(t+k)$
- Spectral approximation with adaptive quadrature and nonuniform FFT to approximate the PDE problem to high accuracy
- Richard extrapolation in time stepping

Convolution-Thresholding Methods: Pros and Cons

Pros:

- Handles topological changes
- Easy extension to 3D
- Junctions
- High accuracy

Cons:

- Limited application
- Cannot handle mixed junctions

mmary

Convolution-Thresholding Methods: Old Picture

Ruuth

t = 0.0000

t = 0.0036

t = 0.0072

t = 0.0108

t = 0.0144

t = 0.0180

IV: Curve tracking x formulation

- $x_t \cdot \hat{n} = V$
- Tangential velocity maintains scaled arc-length, impose this directly:

$$\frac{1}{2}\frac{\partial}{\partial\sigma}|x_{\sigma}|^{2} = x_{\sigma} \cdot x_{\sigma\sigma} = 0 \quad \text{or} \quad |x_{\sigma}| = L$$

• Fix arbitrary constant:

$$\int_0^1 x_t \cdot \hat{\tau} d\sigma = 0$$

• Curvature
$$\kappa = x_{\sigma\sigma} \cdot (x_{\sigma})^{\perp}/L^3$$

imary

Curve tracking x formulation: Pros and Cons

Pros:

- High spatial accuracy
- Arbitrary time stepping (fully implicit)
- Handles mixed junctions

Cons:

- Does not handle topological changes
- No (easy) extension to 3D: Nurnberg

Surface tracking for other problems: Glimm, Krasny

nary Ext

Curve tracking x example: crystal grain evolution

Bronsard and Wetton 1995

Curve tracking x example: quarter loop

Pan and Wetton 2008

iry Extr

Curve tracking x example: general local motion

 $V(\kappa,\kappa_{ss},L)$

Wetton 2011 unpublished

Summary

Extras

Mullins Sekerka

- Zhu, Chen and Hou 1995
- Angle tracking formulation, spectral in σ
- Single layer potential formulation

$$u(y) = C(t) + rac{1}{2\pi}\int_{\Gamma}\ln|x-y|f(s)ds|$$

- Singular boundary integral problem to match $u = \kappa$.
- Potential f(s) is exactly $V = [\partial u / \partial n]$.
- Stiffest evolution term is spectrally diagonal, IMEX method

Generalized Mullins Sekerka problem

- Moyles and Wetton, JCP 2015
- x tracking formulation, second order finite differences in σ , fully implicit in time
- Single layer potential formulation

$$u(y) = rac{1}{2\pi} \int_{\Gamma} \mathcal{K}_0(|x-y|) f(s) ds$$

- Singular boundary integral problem to match $u = U_0(s)$.
- f(s) = [∂u/∂n], and ∂u/∂n₊ + ∂u/∂n₋ can be determined from f with a non-singular integral.

Generalized Mullins Sekerka problem cont.

- Discretize with N points in $\sigma \in [0, 1]$.
- Use discrete unknowns X, F, U_0 , V and L (5N + 1).
- Backward Euler time stepping

•
$$(X^{n+1} - X^n) \cdot (D_1 X^{n+1} / L)^{\perp} - k V^{n+1} = 0$$
 normal velocity (N)

•
$$|D_+X^{n+1}|^2 - (L^{n+1})^2 = 0$$
 scaled arc length (N)

- $\sum (X^{n+1} X^n) \cdot D_1 X^{n+1} = 0$ arbitrary tangential constant (1)
- $\mathbf{M}_1 F^{n+1} U_0^{n+1} = 0$ singular integral equation (N)
- $F^{n+1} \mathcal{G}(U_0^{n+1}) = 0$ matching condition (N)
- $D_2 X^{n+1} \cdot (D_1 X^{n+1})^{\perp} / L^3 + \mathcal{H}(U_0^{n+1}) \mathbf{M}_2 F^{n+1} V^{n+1} = 0$ velocity (N)
- Nonlinear system solved with Newton's iterations
- $\boldsymbol{\mathsf{M}}_1$ and $\boldsymbol{\mathsf{M}}_2$ are dense, other Jacobian blocks are sparse.

Generalized Mullins Sekerka problem cont.

- Problem has an index-1 DAE structure, high order accurate time stepping is possible.
- Product trapezoid rule used for the singular integral. Errors $O(h^2 \log h), h = \Delta \sigma$.
- Higher order quadrature is possible Alpert 1999, Quaife 2011.
- We use a direct solver. Iterative Krylov subspace solvers could be possible, M_1 and M_2 can be applied efficiently using fast multipole techniques.
- The *U*₀(Γ) sub-problem can fail to have a solution and there are non-unique solutions.

Generalized Mullins Sekerka problem results I

Possible bifurcations in the $U_0(\Gamma)$ sub-problem

ummary

Generalized Mullins Sekerka problem results II

3-mode buckling (Movie)

Summary

- Some history and comparison of methods for local geometric motion
- New framework to handle a general class of 2D nonlocal geometric motion problems. Easy to adapt to new problem structures.
- Fully implicit time stepping.
- Current implementation is low order, but efficient and high order methods are possible.

Allen-Cahn \rightarrow Curvature Motion cont.

$$u_t = \epsilon^2 \Delta u - W'(u), \qquad W'(u) = u^3 + u$$

Outer solution $u = u^{(0)} + \epsilon u^{(1)} + \dots$

- u(x(s, t), t) = 0 describes the interface.
- $O(1): u_t^{(0)} = -W'(u^{(0)})$ so $u^{(0)} \to \pm 1$.

•
$$O(\epsilon): u_t^{(1)} = -W''(u^{(0)})u^{(1)} = -2u^{(1)}$$
 so $u^{(1)} \equiv 0$.

Allen-Cahn \rightarrow Curvature Motion cont.

$$u_t = \epsilon^2 \Delta u - W'(u), \qquad W'(u) = u^3 + u$$

• $\tau = \epsilon^2 t$.

• z is the interface normal direction, scaled by ϵ .

•
$$u_t = \epsilon V \partial u / \partial z + \dots (V = \partial x / \partial \tau \cdot \hat{n})$$

•
$$\epsilon^2 \Delta u = \partial^2 u / \partial z^2 - \epsilon \kappa \partial u / \partial z + \dots$$

Inner solution $u = u^{(0)} + \epsilon u^{(1)} + \dots$

• $O(1): \partial^2 u^{(0)}/\partial z^2 - W'(u^{(0)}) = 0$. To match outer solution

$$u^{(0)}(z) = \tanh(z/2).$$

- $O(\epsilon): V\partial u^{(0)}/\partial z = \partial^2 u^{(1)}/\partial z^2 W''(u^{(0)})u^{(1)} \kappa \partial u^{(0)}/\partial z$
- Solvability condition $V = -\kappa$.

mary Extras

III: Curve tracking angle formulation

$$x_t = V\hat{n} + U\hat{\tau}$$

- Tangential velocity U to be determined
- Curve length L(t) can change.
- Scaled arc length $\sigma=s/L\in[0,1]$, $\hat{ au}=x_{\sigma}/L$, $\hat{n}=\hat{ au}^{\perp}$
- Write $x_{\sigma} = L(\cos \theta, \sin \theta)$. Use θ and U as unknowns.
- Differentiate equation with σ , equate \hat{n} and $\hat{\tau}$ components:

$$\hat{\tau} : \dot{L} = -V\theta_{\sigma} + U_{\sigma} \hat{n} : L\theta_t = V_{\sigma} + U\theta_s$$

- Curvature $\kappa = \theta_s = \theta_\sigma/L$.
- Stiffest term θ_t ∼ θ_{σσ}.

Curve tracking angle formulation: Pros and Cons

Pros:

- High spatial accuracy
- Efficient IMEX time stepping

Cons:

- Does not handle topological changes
- No extension to 3D
- Not a natural formulation for junctions