| Overview | AC/CH<br>0000<br>0 | AC first order | CH first order | Second Order | BE Accuracy | Summary |
|----------|--------------------|----------------|----------------|--------------|-------------|---------|
|----------|--------------------|----------------|----------------|--------------|-------------|---------|

# A Second Look at Time Stepping for Phase Field Models

#### Brian Wetton

Mathematics Department University of British Columbia www.math.ubc.ca/~wetton

SFU Applied and Computational Mathematics Seminar March 8, 2019



#### Joint work with Xinyu Cheng and Keith Promislow

- Allen Cahn and Cahn Hilliard Dynamics
- Time Stepping:
  - Schemes
  - Adaptive Time Stepping
  - Numerical Validation
- Accuracy:
  - Asymptotic Consistency
  - Asymptotic Analysis of BE for AC



AC first order

AC/CH

•000

CH first order

er Second

BE Accura

Summary

# Allen Cahn Dynamics

u(x, t),  $2\pi$ -periodic in x solves

$$u_t = u_{xx} - (u^3 - u)/\epsilon^2$$

#### Allen and Cahn, Acta Metall 1979

- For discussion forget the diffusion term. AC is then an autonomous ODE with fixed points  $u = \pm 1$  (stable) and u = 0 (unstable) at each space location
- solutions tend to  $u = \pm 1$  in  $O(1/\epsilon^2)$  time: spinodal evolution
- with  $\epsilon>0$  there is an interface of width  ${\rm O}(\epsilon)$  that is formed between the two phases

AC first order

AC/CH

0000

CH first order

Second Order

E Accuracy

Summary

# Allen Cahn Dynamics

Gamma Limit

$$u_t = \Delta u - (u^3 - u)/\epsilon^2$$

• 1D steady state solution

$$u = \tanh\left(rac{x-x_0}{\epsilon\sqrt{2}}
ight)$$

- in higher dimensions,  $x_0$  is replaced by the curve between the phases  $u = \pm 1$  and  $x x_0$  is replaced by a normal distance to the curve
- in this case, the solution is approximate and the interface will move in a slower time scale: ripening evolution
- higher order asymptotic terms can determine a motion law for the interface: gamma limit
- For 2D & 3D AC curves move with curvature motion as  $\epsilon \rightarrow 0$  in an O(1) time scale.

AC first ord

AC/CH

CH first order

Second Order

E Accuracy

Summary

# Allen Cahn Dynamics

Energy Gradient Flow

$$u_t = \Delta u - W'(u)/\epsilon^2$$
  
 $\mathcal{W}(u) = rac{1}{4}(u^2-1)^2$ 

• This equation is gradient flow on the energy

$$\mathcal{E} = \int_0^{2\pi} \left( |
abla u|^2/2 + W(u)/\epsilon^2 
ight) dx$$

- This leads to a symmetric Jacobian matrix for the implicit time steps of the discretization
- Movie

AC first or

AC/CH

CH first order

Second Order

Accuracy

Summary

### Allen Cahn Dynamics

#### Details of Computational Results





AC first order

AC/CH

CH first order

Second C

BE Accuracy

Summary

# Cahn-Hilliard Dynamics

$$u_t = -\Delta \left(\epsilon \Delta u - (u^3 - u)/\epsilon\right)$$

Cahn and Hilliard, J Chem Phys 1958

• Gradient flow on the same energy a AC but in the  $H_{-1}$  norm that has inner product

$$(u, v)_{H_{-1}} := (u, \Delta^{-1}v)$$

- Conserves the mass of the two phases
- The gamma limit is nonlocal, Mullins-Sekerka flow, in *O*(1) time scale.
- Movie



### First Order Schemes for AC

$$u_t = \Delta u - (u^3 - u)/\epsilon^2$$

Consider Spatially Continuous Semi-Discretization (Map of Planes) FI Fully Implicit (Backward Euler):

$$U^{n+1} = U^{n} + k\Delta U^{n+1} - k \left[ (U^{n+1})^3 - U^{n+1} \right] ) / \epsilon^2$$

ES Energy Stable (Eyre, Convex/Concave Splitting):

$$U^{n+1} = U^{n} + k\Delta U^{n+1} - k \left[ (U^{n+1})^{3} - U^{n} \right] ) / \epsilon^{2}$$

- ES schemes have desirable properties.
- FI schemes are asymptotically more accurate than ES.

AC first order

CH first order

Second Order

BE Accuracy

Summary

### Local Truncation Error

Asymptotic solution in metastable dynamics:

$$u(x,t) pprox anh\left(rac{\operatorname{dist}(x,\Gamma)}{\epsilon\sqrt{2}}
ight)$$
, so  $rac{\partial^n u}{\partial t^n} = O(\epsilon^{-n})$ 

FI local error

$$\frac{1}{2}k^2u_{tt}=O(k^2/\epsilon^2)$$

ES

$$U^{n+1} = U^n + k\Delta U^{n+1} - k\left[(U^{n+1})^3 - U^n\right])/\epsilon^2 = FI - k(U^{n+1} - U^n)/\epsilon^2$$

ES dominant local error term

$$k^2 u_t / \epsilon^2 = O(k^2 / \epsilon^3)$$

ES is asymptotically less accurate than FI.



# Adaptive Time Stepping

Let  $\sigma$  be the allowable local error per time step.

- FI (local error  $O(k^2/\epsilon^2)$ )
  - $k = O(\sqrt{\sigma}\epsilon)$
  - $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon))$
- ES (local error  $O(k^2/\epsilon^3))$ 
  - $k = O(\sqrt{\sigma}\epsilon^{3/2})$
  - $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon^{3/2}))$

First Goal: Identify how M behaves with  $\epsilon$  for fixed  $\sigma$  for different schemes and problems



Spatial Discretization and Discrete Solution

$$\mathbf{G}(U) := U - k \left[ \Delta U - (U^3 - U)/\epsilon^2 \right] - U^n = 0$$

Newton's method with symmetric Frechet derivative

$$\mathcal{J} = I - k(\Delta - \Lambda_2/\epsilon^2 + I/\epsilon^2)$$

where  $\Lambda_2$  is pointwise multiplication by  $3U^2$ .

• Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

$$\mathcal{Q} = I - k(\Delta - 2/\epsilon^2)$$

- J and Q<sup>-1</sup> can be implemented easily in a PCG solve of a Newton step with a spectral spatial discretization.
- Solver properties are independent of the spatial resolution.



### Error Estimation

- Perform two time steps of the same size k
- Compute the predictor  $U^p$  for  $U^{n+2}$

$$U^{p} = U^{n} + \frac{k}{3} \left( \mathcal{F}(U^{n}) + 4\mathcal{F}(U^{n+1}) + \mathcal{F}(U^{n+2}) \right)$$

where  $\mathcal{F}(u) = \Delta u - f(u)/\epsilon^2$  for AC.

• Time step sizes are adjusted so that

$$\|U^{n+2}-U^p\|_{\infty}\leq\sigma.$$

- $U^p$  is one order more accurate than  $U^{n+2}$ , up to fifth order
- $U^p$  has an inherent dominant local error  $k^5 u_{ttttt}/90$

AC first order

CH first order

Second Orde

E Accuracy

Summary

# AC Numerical Results

Fully Implicit  $M = O(1/(\sqrt{\sigma}\epsilon))$ 

 $\epsilon =$  0.2,  $\sigma$  varied

AC/CH

| σ    | М            | CG            | E     |
|------|--------------|---------------|-------|
| 1e-4 | 717          | 5,348 [7.46]  | 0.003 |
| 1e-5 | 2,225 (3.10) | 9,448 [4.24]  | 0.001 |
| 1e-6 | 7,010 (3.15) | 23,017 [3.28] | 0.001 |

Validates  $M = O(\sqrt{\sigma})$  for constant  $\epsilon$ .  $(\sqrt{10} \approx 3.16)$ .

 $\epsilon$  varied,  $\sigma = 1e - 4$ 

| $\epsilon$ | М            | CG             | E     |
|------------|--------------|----------------|-------|
| 0.2        | 717          | 5,348 [7.46]   | 0.003 |
| 0.1        | 1,291 (1.80) | 12,354 [9.57]  | 0.001 |
| 0.05       | 2,412 (1.87) | 27,782 [11.52] | 0.001 |
| 0.025      | 4,630 (1.92) | 64,884 [14.01] | *     |

Validates  $M = O(1/\epsilon)$  for constant  $\sigma$ .

AC first order

CH first order

Second Order

BE Accuracy

Summary

## AC Numerical Results

Energy Stable  $M = O(1/(\sqrt{\sigma}\epsilon^{3/2}))$ 

 $\epsilon =$  0.2,  $\sigma$  varied

| σ    | М             | CG            | E     |
|------|---------------|---------------|-------|
| 1e-4 | 2,350         | 14,856 [6.32] | 0.047 |
| 1e-5 | 7,351 (3.12)  | 28,263 [3.85] | 0.014 |
| 1e-6 | 23,172 (3.15) | 68,148 [2.94] | 0.004 |

Validates  $M = O(\sqrt{\sigma})$  for constant  $\epsilon$ ,  $(\sqrt{10} \approx 3.16)$ .

#### $\epsilon$ varied, $\sigma = 1e - 4$

| $\epsilon$ | M             | CG             | transition |
|------------|---------------|----------------|------------|
| 0.2        | 2,350         | 14,856 [6.32]  | 0.047      |
| 0.1        | 6,463 (2.75)  | 44,717 [6.92]  | 0.069      |
| 0.05       | 18,218 (2.83) | 143,416 [7.87] | 0.099      |
| 0.025      | 52,595 (2.89) | 497,846 [9.47] | 0.141      |

Validates  $M = O(1/\epsilon^{3/2})$  for constant  $\sigma$ ,  $(2^{3/2} \approx 2.83)$ , and reduced accuracy as  $\epsilon \to 0$ .

AC first order

CH first order

Second Order

E Accuracy

Summary

# Cahn Hilliard Equation

#### Local Truncation Error

FI local error as before

$$\frac{1}{2}k^2u_{tt}=O(k^2/\epsilon^2)$$

ES dominant local error term

$$k^2 \Delta u_t / \epsilon = O(k^2 / \epsilon^4)$$

Gap in performance between FI and ES larger for CH than AC.



# Adaptive Time Stepping for CH

Let  $\sigma$  be the allowable local error per time step.

FI (local error  $O(k^2/\epsilon^2)$ )

- $k = O(\sqrt{\sigma}\epsilon)$
- $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon))$

ES (local error  $O(k^2/\epsilon^4)$ )

- $k = O(\sqrt{\sigma}\epsilon^2)$
- $M = O(1/k) = O(1/(\sqrt{\sigma}\epsilon^2))$

Observed computationally.



Second Order L-stable Schemes

BDF2: 
$$\frac{3U}{2} - k\mathcal{F}(U) = 2U^n - U^{n-1}/2$$

Local truncation error  $-k^3 u_{ttt}/3 = O(k^3/\epsilon^3)$  for both AC and CH.

DIRK2: 
$$U^* - \alpha k \mathcal{F}(U^*) = U^n$$
  
 $U - \alpha k \mathcal{F}(U) = U^n + (1 - \alpha) k \mathcal{F}(U^*)$ 

Local truncation error:

AC: 
$$3\alpha^2(1-\alpha)uu_t^2/(2\epsilon^2) = O(k^3/\epsilon^4)$$
  
CH:  $-\Delta \left(3\alpha^2(1-\alpha)uu_t^2/(2\epsilon)\right) = O(k^3/\epsilon^5)$ 

Observed computationally.



# Source of Increased Error

- In the metastable regimes of AC and CH, diffusion and nonlinear reaction are both large but approximately cancel to give the slow dynamics.
- FI(BE) and BDF2 dominant truncation errors that are pure time derivatives of the solution, which inherit this high order cancellation.
- ES and DIRK2 have truncation errors that involve the reaction term individually, hence the amplification in size.

## BE Accuracy for AC

BE Accuracy

A naïve prediction for the final accuracy of BE is  $M\sigma = O(\sqrt{\sigma}/\epsilon)$ , but we see computationally accuracy independent of  $\epsilon$  for fixed  $\sigma$ .

We consider the scaling  $k = c\epsilon$  with c small and fixed. We write

$$U^n(\mathbf{x}) = u(\mathbf{x}, nk) + e^n$$

where  $e^n(s, z)$  is the error.





### Error Analysis for BE applied to AC – I

$$U^n(\mathbf{x}) = u(\mathbf{x}, nk) + e^n$$

Insert into the discrete equation

$$U^{n+1} = U^n + k\Delta U^{n+1} + kf(U^{n+1})$$

linearize around the exact solution keeping only dominant terms:

$$e^{n+1} + rac{k}{\epsilon^2} \mathcal{L} e^{n+1} pprox e^n + \tau^{n+1}$$

where  $\mathcal{L} := -\partial^2/\partial z^2 + f'(g)$ ,  $g(z) = \tanh(z/\sqrt{2})$ , and  $\tau^n$  is the local truncation error:

$$\tau^n = k^2 u_{tt}/2 = \frac{k^2}{2} \left( -g'(z) V_t/\epsilon + g'' V^2/\epsilon^2 \right)$$

The error is approximately due to the linearized problem forced by the truncation error.



### Error Analysis for BE applied to AC - II

$$e^{n+1} + rac{k}{\epsilon^2} \mathcal{L} e^{n+1} pprox e^n + \tau^{n+1}$$

At each s we make an  $L_2$  (in z) orthogonal decomposition of  $e^n$ :

$$e^n=r^n+w^n,\ r^n(s,z)\in \mathrm{span}\{g'(z)\}:=G$$
 and  $w^n\in G^\perp$ 

 $\mathcal{L}$  has G as its kernel and is positive with bounded inverse on  $G^{\perp}$ .

$$\tau^n = \frac{k^2}{2} \left( -g'(z) V_t / \epsilon + g'' V^2 / \epsilon^2 \right)$$

Note that  $g'' \in G^{\perp}$ .

$$r^{n+1} = r^n + \frac{k^2}{2\epsilon} |V_t| \tag{1}$$

$$\|w^{n+1}\| \le \frac{1}{1 + kK/\epsilon^2} \left( \|w^n\| + k^2 V^2 \|g''\|/\epsilon^2 \right)$$
(2)

to dominant order (as  $\epsilon \rightarrow 0$ ).



## Error Analysis for BE applied to AC - III

$$r_{n+1} = r_n + \frac{k^2}{2\epsilon} |V_t| \tag{3}$$

$$\|w_{n+1}\| \leq \frac{1}{1 + kK/\epsilon^2} \left( \|w_n\| + k^2 V^2 \|g''\|/\epsilon^2 \right)$$
(4)

- Recall  $k = c\epsilon$ .
- We can sum the first equation over O(1/k) time steps to find r = O(c).
- Consider the second equation to see that w = O(k).
- Error is O(c) independent of  $\epsilon$ .

Because the dominant truncation error is in  $G^{\perp}$ , it is heavily damped every time step and only a lower order term accumulates in the global temporal error. No other time stepping method we considered has this property.

AC first order

CH first order

Second

BE Accuracy

Summary

# Asymptotic Consistency

### Definition

Consider a family of solutions  $u(\epsilon)$  and a family of schemes  $U(k, \epsilon)$  to approximate  $u(\epsilon)$  with numerical parameter k. A map  $k(\epsilon)$  is said to be *asymptotically consistent* of order p if

$$\lim_{\epsilon \to 0} \|U(ck(\epsilon), \epsilon) - u(\epsilon)\| \le Kc^{p}$$

with K independent of  $\epsilon$ .

We can convincingly conjecture that BE for AC in metastable dynamics is first order asymptotically consistent with  $k = \epsilon$ .



- 1. Behaviour of time steps for different schemes for AC and CH with  $\sigma$  and  $\epsilon$  is predicted and validated with numerical experiments.
- 2. It is seen that methods with a dominant local truncation error that is a pure time derivative behave asymptotically better than those that do not. BE and BDF2 have this desirable property.
- 3. We observe better accuracy for BE applied to AC than expected and show a formal asymptotic argument that explains the behaviour.
- 4. The asymptotic consistency of higher order methods is left as an open question.
- 5. Accurate local error estimation is another open question.