
Overview AC/CH AC first order CH first order Second Order BE Accuracy Summary

A Second Look at Time Stepping for Phase Field
Models

Brian Wetton

Mathematics Department
University of British Columbia
www.math.ubc.ca/∼wetton

SFU Applied and Computational Mathematics Seminar
March 8, 2019



Overview AC/CH AC first order CH first order Second Order BE Accuracy Summary

Overview

Joint work with Xinyu Cheng and Keith Promislow

• Allen Cahn and Cahn Hilliard Dynamics

• Time Stepping:
• Schemes
• Adaptive Time Stepping
• Numerical Validation

• Accuracy:
• Asymptotic Consistency
• Asymptotic Analysis of BE for AC
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Allen Cahn Dynamics

u(x , t), 2π-periodic in x solves

ut = uxx − (u3 − u)/ε2

Allen and Cahn, Acta Metall 1979

• For discussion forget the diffusion term. AC is then an
autonomous ODE with fixed points u = ±1 (stable) and
u = 0 (unstable) at each space location

• solutions tend to u = ±1 in O(1/ε2) time: spinodal evolution

• with ε > 0 there is an interface of width O(ε) that is formed
between the two phases
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Allen Cahn Dynamics
Gamma Limit

ut = ∆u − (u3 − u)/ε2

• 1D steady state solution

u = tanh

(
x − x0

ε
√

2

)
• in higher dimensions, x0 is replaced by the curve between the

phases u = ±1 and x − x0 is replaced by a normal distance to
the curve

• in this case, the solution is approximate and the interface will
move in a slower time scale: ripening evolution

• higher order asymptotic terms can determine a motion law for
the interface: gamma limit

• For 2D & 3D AC curves move with curvature motion as ε→ 0
in an O(1) time scale.
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Allen Cahn Dynamics
Energy Gradient Flow

ut = ∆u −W ′(u)/ε2

W (u) =
1

4
(u2 − 1)2

• This equation is gradient flow on the energy

E =

∫ 2π

0

(
|∇u|2/2 + W (u)/ε2

)
dx

• This leads to a symmetric Jacobian matrix for the implicit
time steps of the discretization

• Movie
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Allen Cahn Dynamics
Details of Computational Results
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Cahn-Hilliard Dynamics

ut = −∆
(
ε∆u − (u3 − u)/ε

)
Cahn and Hilliard, J Chem Phys 1958

• Gradient flow on the same energy a AC but in the H−1 norm
that has inner product

(u, v)H−1 := (u,∆−1v)

• Conserves the mass of the two phases

• The gamma limit is nonlocal, Mullins-Sekerka flow, in O(1)
time scale.

• Movie
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First Order Schemes for AC

ut = ∆u − (u3 − u)/ε2

Consider Spatially Continuous Semi-Discretization (Map of Planes)

FI Fully Implicit (Backward Euler):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un+1

]
)/ε2

ES Energy Stable (Eyre, Convex/Concave Splitting):

Un+1 = Un + k∆Un+1 − k
[
(Un+1)3 − Un

]
)/ε2

• ES schemes have desirable properties.

• FI schemes are asymptotically more accurate than ES.
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Local Truncation Error

Asymptotic solution in metastable dynamics:

u(x , t) ≈ tanh

(
dist(x , Γ)

ε
√

2

)
, so

∂nu

∂tn
= O(ε−n)

FI local error
1

2
k2utt = O(k2/ε2)

ES

Un+1 = Un+k∆Un+1−k
[
(Un+1)3 − Un

]
)/ε2 = FI−k(Un+1−Un)/ε2

ES dominant local error term

k2ut/ε
2 = O(k2/ε3)

ES is asymptotically less accurate than FI.
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Adaptive Time Stepping

Let σ be the allowable local error per time step.

FI (local error O(k2/ε2))

• k = O(
√
σε)

• M = O(1/k) = O(1/(
√
σε))

ES (local error O(k2/ε3))

• k = O(
√
σε3/2)

• M = O(1/k) = O(1/(
√
σε3/2))

First Goal: Identify how M behaves with ε for fixed σ for different
schemes and problems
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Spatial Discretization and Discrete Solution

G(U) := U − k
[
∆U − (U3 − U)/ε2

]
− Un = 0

• Newton’s method with symmetric Frechet derivative

J = I − k(∆− Λ2/ε
2 + I/ε2)

where Λ2 is pointwise multiplication by 3U2.

• Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

Q = I − k(∆− 2/ε2)

• J and Q−1 can be implemented easily in a PCG solve of a
Newton step with a spectral spatial discretization.

• Solver properties are independent of the spatial resolution.
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Error Estimation

• Perform two time steps of the same size k

• Compute the predictor Up for Un+2

Up = Un +
k

3

(
F(Un) + 4F(Un+1) + F(Un+2)

)
where F(u) = ∆u − f (u)/ε2 for AC.

• Time step sizes are adjusted so that

‖Un+2 − Up‖∞ ≤ σ.

• Up is one order more accurate than Un+2, up to fifth order

• Up has an inherent dominant local error k5uttttt/90
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AC Numerical Results
Fully Implicit M = O(1/(

√
σε))

ε = 0.2, σ varied

σ M CG E

1e-4 717 5,348 [7.46] 0.003
1e-5 2,225 (3.10) 9,448 [4.24] 0.001
1e-6 7,010 (3.15) 23,017 [3.28] 0.001

Validates M = O(
√
σ) for constant ε. (

√
10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG E

0.2 717 5,348 [7.46] 0.003
0.1 1,291 (1.80) 12,354 [9.57] 0.001

0.05 2,412 (1.87) 27,782 [11.52] 0.001
0.025 4,630 (1.92) 64,884 [14.01] *

Validates M = O(1/ε) for constant σ.
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AC Numerical Results
Energy Stable M = O(1/(

√
σε3/2))

ε = 0.2, σ varied

σ M CG E

1e-4 2,350 14,856 [6.32] 0.047
1e-5 7,351 (3.12) 28,263 [3.85] 0.014
1e-6 23,172 (3.15) 68,148 [2.94] 0.004

Validates M = O(
√
σ) for constant ε, (

√
10 ≈ 3.16).

ε varied, σ = 1e − 4

ε M CG transition

0.2 2,350 14,856 [6.32] 0.047
0.1 6,463 (2.75) 44,717 [6.92] 0.069

0.05 18,218 (2.83) 143,416 [7.87] 0.099
0.025 52,595 (2.89) 497,846 [9.47] 0.141

Validates M = O(1/ε3/2) for constant σ, (23/2 ≈ 2.83), and
reduced accuracy as ε→ 0.
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Cahn Hilliard Equation
Local Truncation Error

FI local error as before

1

2
k2utt = O(k2/ε2)

ES dominant local error term

k2∆ut/ε = O(k2/ε4)

Gap in performance between FI and ES larger for CH than AC.
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Adaptive Time Stepping for CH

Let σ be the allowable local error per time step.

FI (local error O(k2/ε2))

• k = O(
√
σε)

• M = O(1/k) = O(1/(
√
σε))

ES (local error O(k2/ε4))

• k = O(
√
σε2)

• M = O(1/k) = O(1/(
√
σε2))

Observed computationally.
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Second Order L-stable Schemes

BDF2:
3U

2
− kF(U) = 2Un − Un−1/2

Local truncation error −k3uttt/3 = O(k3/ε3) for both AC and CH.

DIRK2: U∗ − αkF(U∗) = Un

U − αkF(U) = Un + (1− α)kF(U∗)

Local truncation error:

AC: 3α2(1− α)uu2
t /(2ε2) = O(k3/ε4)

CH: −∆
(
3α2(1− α)uu2

t /(2ε)
)

= O(k3/ε5)

Observed computationally.
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Source of Increased Error

• In the metastable regimes of AC and CH, diffusion and
nonlinear reaction are both large but approximately cancel to
give the slow dynamics.

• FI(BE) and BDF2 dominant truncation errors that are pure
time derivatives of the solution, which inherit this high order
cancellation.

• ES and DIRK2 have truncation errors that involve the
reaction term individually, hence the amplification in size.
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BE Accuracy for AC

A näıve prediction for the final accuracy of BE is Mσ = O(
√
σ/ε),

but we see computationally accuracy independent of ε for fixed σ.

We consider the scaling k = cε with c small and fixed. We write

Un(x) = u(x, nk) + en

where en(s, z) is the error.
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Error Analysis for BE applied to AC – I

Un(x) = u(x, nk) + en

Insert into the discrete equation

Un+1 = Un + k∆Un+1 + kf (Un+1)

linearize around the exact solution keeping only dominant terms:

en+1 +
k

ε2
Len+1 ≈ en + τn+1

where L := −∂2/∂z2 + f ′(g), g(z) = tanh(z/
√

2), and τn is the
local truncation error:

τn = k2utt/2 =
k2

2

(
−g ′(z)Vt/ε+ g ′′V 2/ε2

)
The error is approximately due to the linearized problem forced by
the truncation error.
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Error Analysis for BE applied to AC – II

en+1 +
k

ε2
Len+1 ≈ en + τn+1

At each s we make an L2 (in z) orthogonal decomposition of en:

en = rn + wn, rn(s, z) ∈ span{g ′(z)} := G and wn ∈ G⊥

L has G as its kernel and is positive with bounded inverse on G⊥.

τn =
k2

2

(
−g ′(z)Vt/ε+ g ′′V 2/ε2

)
Note that g ′′ ∈ G⊥.

rn+1 = rn +
k2

2ε
|Vt | (1)

‖wn+1‖ ≤ 1

1 + kK/ε2

(
‖wn‖+ k2V 2‖g ′′‖/ε2

)
(2)

to dominant order (as ε→ 0).
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Error Analysis for BE applied to AC – III

rn+1 = rn +
k2

2ε
|Vt | (3)

‖wn+1‖ ≤
1

1 + kK/ε2

(
‖wn‖+ k2V 2‖g ′′‖/ε2

)
(4)

• Recall k = cε.

• We can sum the first equation over O(1/k) time steps to find
r = O(c).

• Consider the second equation to see that w = O(k).

• Error is O(c) independent of ε.

Because the dominant truncation error is in G⊥, it is heavily
damped every time step and only a lower order term accumulates
in the global temporal error. No other time stepping method we
considered has this property.
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Asymptotic Consistency

Definition
Consider a family of solutions u(ε) and a family of schemes U(k, ε)
to approximate u(ε) with numerical parameter k . A map k(ε) is
said to be asymptotically consistent of order p if

lim
ε→0
‖U(ck(ε), ε)− u(ε)‖ ≤ Kcp

with K independent of ε.

We can convincingly conjecture that BE for AC in metastable
dynamics is first order asymptotically consistent with k = ε.
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Summary

1. Behaviour of time steps for different schemes for AC and CH
with σ and ε is predicted and validated with numerical
experiments.

2. It is seen that methods with a dominant local truncation error
that is a pure time derivative behave asymptotically better
than those that do not. BE and BDF2 have this desirable
property.

3. We observe better accuracy for BE applied to AC than
expected and show a formal asymptotic argument that
explains the behaviour.

4. The asymptotic consistency of higher order methods is left as
an open question.

5. Accurate local error estimation is another open question.
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