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Overview

Joint work with Xinyu Cheng and Keith Promislow

e Allen Cahn and Cahn Hilliard Dynamics
e Time Stepping:

e Schemes

e Adaptive Time Stepping

e Numerical Validation
e Accuracy:

e Asymptotic Consistency
e Asymptotic Analysis of BE for AC

BE Accuracy

Summary
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Allen Cahn Dynamics

u(x, t), 2m-periodic in x solves
U = U — (0% — 1) /€2

Allen and Cahn, Acta Metall 1979

e For discussion forget the diffusion term. AC is then an
autonomous ODE with fixed points u = +1 (stable) and
u =0 (unstable) at each space location

e solutions tend to u = +1 in O(1/€?) time: spinodal evolution

e with € > 0 there is an interface of width O(¢) that is formed
between the two phases
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Allen Cahn Dynamics

Gamma Limit

ur = Au— (v — u)/é

1D steady state solution

X — X0
u = tanh
<6\ﬁ>

in higher dimensions, xp is replaced by the curve between the

phases u = £1 and x — xg is replaced by a normal distance to
the curve

in this case, the solution is approximate and the interface will

move in a slower time scale: ripening evolution

higher order asymptotic terms can determine a motion law for
the interface: gamma limit

For 2D & 3D AC curves move with curvature motion as ¢ — 0
in an O(1) time scale.
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Allen Cahn Dynamics

Energy Gradient Flow

W) = J(u®-1)
e This equation is gradient flow on the energy
2
€= / (IVu2/2 + W(u)/e) dx
0
e This leads to a symmetric Jacobian matrix for the implicit

time steps of the discretization

e Movie



Overview AC/CH AC first order CH first order Second Order BE Accuracy Summary
[e]e]e] ) 000
o]

0000
Allen Cahn Dynamics
Details of Computational Results
Energy Sxma Time Steps for AC simulation, sigma varied
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Cahn-Hilliard Dynamics

ug = —A (eAu — (u® — u)/e)
Cahn and Hilliard, J Chem Phys 1958

e Gradient flow on the same energy a AC but in the H_; norm
that has inner product

(u,V)H_, = (u, A7ty)

e Conserves the mass of the two phases
e The gamma limit is nonlocal, Mullins-Sekerka flow, in O(1)
time scale.

e Movie
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First Order Schemes for AC

= Au— (3 —u)/é
Consider Spatially Continuous Semi-Discretization (Map of Planes)

FI Fully Implicit (Backward Euler):
UM = U7 4 kAU — K [(UTHE — grHY)) e
ES Energy Stable (Eyre, Convex/Concave Splitting):
UM = Un 4 kAU — K (UL — Um)) /e

e ES schemes have desirable properties.

e Fl schemes are asymptotically more accurate than ES.
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Local Truncation Error

Asymptotic solution in metastable dynamics:

dist(x, ) ) © 0"u
V2 '

— O(e—n)

t) ~ tanh =
u(x, t) ~ tan ( e

FI local error 1
Ekzutt = O(k2/62)

ES
UM = UnkAUT K [(UmY)E = Un]) /€ = Fl—k(UM—Un) /&
ES dominant local error term

K2up /e = O(K2/3)

ES is asymptotically less accurate than FI.
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Adaptive Time Stepping

Let o be the allowable local error per time step.
FI (local error O(k?/€?))

e k=0(y/ze)

e M=0(1/k) = O(1/(Voe))
ES (local error O(k?/¢3))

. k=0(y5e)

e M= 0(1/K) = O(1/(\/5e¥2)

First Goal: Identify how M behaves with ¢ for fixed o for different
schemes and problems
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Spatial Discretization and Discrete Solution

G(U):=U—-k[AU—-(U*-U)/]-U"=0

Newton's method with symmetric Frechet derivative
T =1—k(A—Ny/e+1/e%)

where A, is pointwise multiplication by 3U2.
e Symmetric preconditioner (Scott Maclachlan and Zhengfu Xu)

Q=1—k(A—-2/)

J and Q7! can be implemented easily in a PCG solve of a
Newton step with a spectral spatial discretization.

Solver properties are independent of the spatial resolution.
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Error Estimation

Perform two time steps of the same size k
Compute the predictor UP for Un+?

UP = U"+ g (F(U") +4F (U™ + F(U™?))

where F(u) = Au — f(u)/€® for AC.

Time step sizes are adjusted so that
HU’”r2 — UP||l < 0.

UP is one order more accurate than U2, up to fifth order

UP has an inherent dominant local error k°ugsr/90
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AC Numerical Results
Fully Implicit M = O(1/(\/o¢€))

€ = 0.2, o varied
o M CG E
le-4 717 5,348 [7.46] | 0.003
le-5 | 2,225 (3.10) | 9,448 [4.24] | 0.001
le-6 | 7,010 (3.15) | 23,017 [3.28] | 0.001

Validates M = O(+/c) for constant €. (v/10 =~ 3.16).
e varied, c = le — 4
€ M CG E
0.2 717 5,348 [7.46] | 0.003
0.1 1,291 (1.80) | 12,354 [9.57] | 0.001
0.05 | 2,412 (1.87) | 27,782 [11.52] | 0.001
0.025 | 4,630 (1.92) | 64,884 [14.01] | *

Validates M = O(1/¢) for constant o.
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AC Numerical Results
Energy Stable M = O(1/( /a€¥/?))

e = 0.2, o varied

o M CG E
led 2,350 14,856 [6.32] | 0.047
le-5 | 7,351 (3.12) | 28,263 [3.85] | 0.014
le6 | 23,172 (3.15) | 68,148 [2.94] | 0.004

Validates M = O(,/o) for constant ¢, (v/10 = 3.16).

e varied, c = le — 4

€ M CG transition
0.2 2,350 14,856 [6.32] 0.047
0.1 6,463 (2.75) | 44,717 [6.92] 0.069
0.05 | 18,218 (2.83) | 143,416 [7.87] 0.099
0.025 | 52,595 (2.89) | 497,846 [9.47] 0.141

Validates M = O(1/€3/?) for constant o, (23/? ~ 2.83), and

reduced accuracy as € — 0.
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Cahn Hilliard Equation

Local Truncation Error

Fl local error as before

%k%tt = O(k?/e?)
ES dominant local error term

k?Aug /e = O(k?/€*)

Gap in performance between Fl and ES larger for CH than AC.
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Adaptive Time Stepping for CH

Let o be the allowable local error per time step.
FI (local error O(k?/€?))

e k= 0(\/oe)

e M=0(1/k) = O(1/(Voe))
ES (local error O(k?/e*))

o k=0(/5e)

o M=0(1/k) = O(1/(Voe?))

Observed computationally.

Summary
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Second Order L-stable Schemes

BDF2: % — kF(U)=2U"-U""1)2

Local truncation error —k3u:/3 = O(k3/€3) for both AC and CH.

DIRK2: U* — akF(U*) = U"
U—akF(U)=U"+(1-a)kF(U")
Local truncation error:
AC:  3a2(1 — a)uu?/(2¢?) = O(k3/e*)
CH:  —A (3a?(1 — a)uu?/(2¢)) = O(k3/e°)

Observed computationally.
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Source of Increased Error

e In the metastable regimes of AC and CH, diffusion and
nonlinear reaction are both large but approximately cancel to
give the slow dynamics.

e FI(BE) and BDF2 dominant truncation errors that are pure
time derivatives of the solution, which inherit this high order
cancellation.

e ES and DIRK2 have truncation errors that involve the
reaction term individually, hence the amplification in size.
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BE Accuracy for AC

A naive prediction for the final accuracy of BE is Mo = O(/o/€),
but we see computationally accuracy independent of € for fixed o.

We consider the scaling k = ce with ¢ small and fixed. We write
U"(x) = u(x, nk) 4+ e"

where e"(s, z) is the error.
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Error Analysis for BE applied to AC — |

U"(x) = u(x, nk) +e"
Insert into the discrete equation
U™ = U™ + kAU + k(U™
linearize around the exact solution keeping only dominant terms:

k
en+1 + 6725(_:‘n—&-1 ~ e + 7_n—i—l
where £ := —02/0z% + f'(g), g(z) = tanh(z/+/2), and 7" is the
local truncation error:

"= Kuy )2 = > (—g'(z)Vt/eJrg”Vz/ez)

The error is approximately due to the linearized problem forced by
the truncation error.
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Error Analysis for BE applied to AC — Il

en+1 + ﬁﬁen—&-l ~ en+Tn+1
2
€
At each s we make an Ly (in z) orthogonal decomposition of e":
e"=r"+w" r'(s,z) € span{g’(z)} := G and w" € G+

L has G as its kernel and is positive with bounded inverse on G

k2
"= > (—g’(z)Vt/e + g"VQ/ez)
Note that g € G*.
[y E|Vt| (1)
2¢

n 1 n
|w +1H < m (”W | + kZVZHg”H/ez) (2)

to dominant order (as € — 0).
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Error Analysis for BE applied to AC — Il

k2
rn+1:rn+Z|Vt| (3)
1

[Wasll < m (”Wn|| + Kk VZHg”H/GZ) (4)

e Recall k = ce.
e We can sum the first equation over O(1/k) time steps to find
r=0(c).
e Consider the second equation to see that w = O(k).
e Error is O(c) independent of e.
Because the dominant truncation error is in G, it is heavily
damped every time step and only a lower order term accumulates

in the global temporal error. No other time stepping method we
considered has this property.
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Asymptotic Consistency

Definition
Consider a family of solutions u(e€) and a family of schemes U(k, ¢)
to approximate u(e) with numerical parameter k. A map k(e) is
said to be asymptotically consistent of order p if

lim ||U(ck(e),€) — u(e)]| < KcP

e—0
with K independent of e.

We can convincingly conjecture that BE for AC in metastable
dynamics is first order asymptotically consistent with k = €.
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Summary

. Behaviour of time steps for different schemes for AC and CH
with o and € is predicted and validated with numerical
experiments.

. It is seen that methods with a dominant local truncation error
that is a pure time derivative behave asymptotically better
than those that do not. BE and BDF2 have this desirable
property.

. We observe better accuracy for BE applied to AC than
expected and show a formal asymptotic argument that
explains the behaviour.

. The asymptotic consistency of higher order methods is left as
an open question.

. Accurate local error estimation is another open question.
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