

A fast solver for a Lithium-Ion battery electrode model

Brian Wetton Rachel Han Colin Macdonald

Mathematics Department University of British Columbia www.math.ubc.ca/~wetton

SIAM PNW 2019, October, 2019

- Battery Basics
- Pseudo 2D Model
 - Fuller, Doyle, and Newman (1994)
 - Scaled model (with Moyles, Myers, and Hennessey)
- Computational Results
- Fast Solver

Lithium Ion Batteries

Open up the Battery

- Negative Electrode: Graphite
- Positive Electrode: Lithium Cobalt Oxide or Lithium Iron Phosphate
- Intercalation: Energetically favourable in the positive electrode
- Electrolyte: Lithium salt in an organic solvent

Pseudo Two Dimensional (P2D) Model Single Electrode Domain

Solid: intercalated Lithium c(y, t; x) P2D, potential $\psi(t)$ high solid conductivity Electrolyte: ionic concentration u(x, t), potential $\phi(x, t)$ Interface: Flux j(x, t) of Li^+ ions into solid P2D

Computations

Fast Solve

Summary

P2D Model Ingredients and Scaling

- Intercalated flux $-D_c c_y$.
- Dilute electrolyte flux $-D_u u_x \pm \frac{FD_u}{RT} u \phi_x$.

Scaling:

- Scale x by L, y by H
- Scale ψ and ϕ by RT/F ($RT/F \approx 0.01$)
- Scale c by c_{\max} , u by u_{eq}
- Scale t by H^2/D_c , j by $D_c c_{\max}/H$
- $\epsilon = H/L \ll 1$ One ingredient for P2D model structure

P2D

P2D Model Scaling

- Consider current density *I* for battery operation
- Diffusive flux in the solid $-D_c c_y$ (unscaled) gives a current limit of order

$$I_1 = \frac{FLD_c c_{\max}}{2H^2}$$

• Diffusive flux in the electrolyte gives a current limit of order

$$I_2 = \frac{FD_u u_{eq}}{2L}$$

- Current not limited by surface flux or electrolyte resistance
- P2D scaling: I, I_1 and I_2 have roughly the same magnitude
- Dimensionless parameters:
 - $I/I_1 := \mathcal{I}$
 - $I/I_2 := \mathcal{I}_*$
 - $I_2/I_1 = \mathcal{I}/\mathcal{I}_* = \epsilon^2 \frac{D_u u_{eq}}{D_c c_{max}} := \mathcal{D}$

Overview

P2D

Computations

Fast Solve

Summary

P2D Model

Scaled Asymptotic Equations

$$I_1 = \frac{FLD_c c_{\max}}{2H^2}, \quad I_2 = \frac{FD_u u_{eq}}{2L}$$
$$I_2/I_1 := \mathcal{D}, \quad I/I_1 := \mathcal{I}$$

$$c_t = c_{yy} \text{ with } c_y |_{y=1} = 0, \quad c_y |_{y=0} = j$$

$$\mathcal{D}u_{xx} = j/2 \text{ with } \int_0^1 u(x) dx = 1, u_x |_{x=0} = 0 \quad !$$

$$\mathcal{D}(u\phi_x)_x = j/2 \text{ with } \phi_x |_{x=0} = 0, \quad \phi |_{x=1} = 0$$

$$j = R\sqrt{uc(1-c)} \exp \{-\psi + \phi\} \text{ with } \int_0^1 j(x) dx = \mathcal{I}$$

- If $I \ll \min\{I_1, I_2\}$ then equivalent circuit model Moyles.
- If $\ensuremath{\mathcal{D}}$ large, then single particle model.
- If $\ensuremath{\mathcal{D}}$ small, electrolyte only model.
- Otherwise, P2D model is appropriate.

Considering spherical particles of radius ${\cal H}$ with 50% volume fraction, change

$$c_t = c_{yy}$$
 with $c_y \mid_{y=1} = 0$, $c_y \mid_{y=0} = j$

to

$$c_t = rac{1}{r^2} (r^2 c_r)_r$$
 with $c_r \mid_{r=0} = 0$, $c_r \mid_{r=1} = j/3$.

 D_u should include tortuousity effects.

Fast Solve

Summary

Computations

Implemented the P2D model in MATLAB:

- Cell-centred finite difference method in x and r
- Implicit time stepping (Backward Euler)
- Newton iterations for the resulting nonlinear problems

Overview

Computations

Fast Solve

Computations $\mathcal{I} = 1$ and $\mathcal{I}_* = 1$ ($\mathcal{D} = 1$)

Eliminating c from the Jacobian matrix The Idea

Note coupling only at one end in y(r):

$$(c - c^{n})/k = c_{yy}$$
 with $c_{y}|_{y=1} = 0$, $c_{y}|_{y=0} = j$
 $j = R\sqrt{uc(1-c)} \exp\{-\psi + \phi\}$ with $\int_{0}^{1} j(x)dx = \mathcal{I}$

c(0) in the expression for j can be found in terms of c^n separately at each x (with a tridiagonal solve in the discrete case).

O(N) unknowns for the channel problem, reduction from $O(N^2)$.

Eliminating *c* from the Jacobian matrix The Speed-Up

Overview

P2D

Computations

Fast Solver

Summary

Electrolyte Problem Reordering

Reorder unknowns, use a Schur complement to reduce the problem to banded solves.

Electrolyte Problem Reordering

The Speed-Up

- Rechargeable Lithium Ion Battery basics
- Scaled P2D model and Computational results
- Fast solver for P2D model suitable for real time control:
 - Eliminate c variables from the channel problem
 - Reorder the channel variables, Shur complement to banded solves
- Next steps:
 - Adaptive time stepping
 - Implement for "real" model with two electrodes and separator