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For each computation of limits in this test, if the limit does not
exist, indicate whether it diverges to —oco or +oco.



1. Each part of this question is worth 1 mark.

(a) (1pt) Find a positive integer n such that  — 3z = 4 for some z in
the interval [n,n + 1].
Solution. Let f(z) = 23 — 3z — 4. We have f(1) = —6, f(2) =
8—6—-4=-2, f(3) =27—9—4 > 0. By Intermediate Value
Theorem, f(z) =0 for some = € [2,3]. Take n = 2.

3x —2
2z +5
Solution. We use the quotient rule,

(b) (1pt) Compute the derivative of

. Simplify your answer.

3z -2\ 3(2z+5)— (3z—2)2
(2x+5> N (2z + 5)2

19
(2x +5)2



2. Each part of this question is worth 2 marks. You have to show all
your work in order to get credit.

(a) (2pt) Use the definition of continuity to find all values a and b such

that
22 +2x+a >0
_ T
f(x) = x
b— 3z <0

is continuous everywhere.
Solution. We need

lim f(z) = f(0) = lim f(x).

z—0— z—0*t

We have lim,_,o- f(x) = f(0) = b. Hence it suffices to have lim,_,o+ f(x) =
lim$_>o+ :l)2+iiz+a = b

For the fraction IQ“%*“, the denominator converges to 0 as x — 0.
Thus we need the numerator also to converge to 0, i.e., lim,_,o+ 22+
2z 4+a=0. So a=0.

Then we need

22 4 2z .oz(x+2)

b= lim = lim —= = lim 2 +2=2
r—0+ €T z—0+ €T z—0t
That is b=2.

(b) (2pt) Find the x-coordinates of the points on the graph of y =
2% — 5z where the tangent line is parallel to 70z + 1.

Solution. The slope of the tangent is f’(z) = 32% — 5; so we are asked
for this slope to equal 70 (since this means that two lines are parallel—
they must have the same slope). We solve and obtain 3z? — 5 = 70, i.e.,
22 = 25 and therefore x = —5 or = 5.



3. This question is worth 4 marks. You have to show all your work in
order to get credit.

Find all positive real numbers a with the property that the function

% (cos(1l/x) —2) if xz>0,
0 if <0

fz) =

is differentiable at x = 0. Justify your answer using the definition
of the derivative.

Solution. In order for f(z) be differentiable at * = 0 we need the
following limit to exist:

i £ = £0)

x—0 1‘—0

Again we need to compute both lateral limits. We get

lim M: lim 9:0’
z—0— z—0 z—0— T

where we used the fact that f(0) = 0. Hence, we need

0= lim M = lim 2! (cos(1/x) —2).

z—0+ z—0 z—0+

If @ > 1, then since —1 — 2 < cos(1/x) — 2 < 1 — 2, we have that when
x— 07T
—3277 1 < 2% ! (cos(1/z) — 2) < —x*h.
Since a > 1, both —3z%~! and —2%~! converge to 0 as x — 01. Hence,
by the Squeeze Theorem,
lim 2! (cos(1/x) —2) = 0.

z—0*t

So when a > 1, f is differentiable at =z = 0.

If a = 1, then lim, ,g+ (cos(1/z) — 2) is undefined because of the oscil-
lating function cos(1/x). So when a = 1, f is NOT differentiable at
z = 0.

If a < 1, then lim,_,o+ 227! (cos(1/x) — 2) = —oo because
: a—1 : 1
lim 27" = lim —— =00
z—0t z—0t+t -7 ¢

So when a < 1, f is NOT differentiable at = = 0.
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For each computation of limits in this test, if the limit does not
exist, indicate whether it diverges to —oco or +oco.



1. Each part of this question is worth 1 mark.

(a) (1pt) Find a positive integer n such that * — 1 = 5z for some z in
the interval [n,n + 1].
Solution. Let f(z) = 2% — 52z —1. We have f(1)=1-5—1= -5,
f(2)=8-10—-1=-3, f(3) =27 —15—1 = 11. By Intermediate
Value Theorem, f(x) = 0 for some x € [2,3]. Take n = 2.

5r — 4
3xr+ 2
Solution. We use the quotient rule,

(b) (1pt) Compute the derivative of

. Simplify your answer.

52 —4\" 53z +2)— (5x —4)3
(3x+2> N (3x + 2)?

22
(3x +2)2



2. Each part of this question is worth 2 marks. You have to show all
your work in order to get credit.

(a)

(b)

(2pt) Use the definition of continuity to find all values a and b such

that
2 —a

f@)=3 =1

b— 3z +a? r<1

z>1

is continuous everywhere.
Solution. We need

lim f(z)=f(1) = lim f(x).

r—1— r—1+

We have lim,_,;- f(z) = f(1) =b—3+1=>b— 2. Hence it suffices

to have lim,_,1+ f(z) = lim,_,;+ Z=* = b — 2.

(1327(1

z—1
Thus we need the numerator also to converge to 0, i.e., lim,_,+ 22 —
a=0.So01l—a=0,ie., a=1.

Then we need

For the fraction

, the denominator converges to 0 as x — 1.

2_1 )z 41

boo— tim Sl gy EDEED i 11—
z—1+ T —1 1+ rx—1 1+

That is b=A4.

(2pt) Find the 2-coordinates of the points on the graph of y = 2°+3
where the tangent line is parallel to 48x + 48.

Solution. The slope of the tangent is f’(z) = 3z2; so we are asked for
this slope to equal 48 (since this means that two lines are parallel—they
must have the same slope). We solve and obtain 322 = 48, i.e., 22 = 16
and therefore x = —4 or x = 4.



3. This question is worth 4 marks. You have to show all your work in
order to get credit.

Find all positive real numbers a with the property that the function

z (sin(1/z) +2) if >0,
0 if <0

fz) =

is differentiable at x = 0. Justify your answer using the definition
of the derivative.

Solution. In order for f(z) be differentiable at * = 0 we need the
following limit to exist:

o £ = 10)

x—0 1‘—0

Again we need to compute both lateral limits. We get

lim M: lim 9:0’
z—0— z—0 z—0— T

where we used the fact that f(0) = 0. Hence, we need

0= tim L& =IO ) 2%t (sin(1/z) +2).

z—0+ z—0 z—0+

If @ > 1, then since —1 + 2 < sin(1/z) + 2 < 1 + 2, we have that when
x — 0"
2% < 207 (sin(1/x) +2) < 3271

Since a > 1, both 2%~ ! and 32! converge to 0 as z — 0*. Hence, by
the Squeeze Theorem,

lim 2! (sin(1/x) +2) = 0.

z—01

So when a > 1, f is differentiable at =z = 0.

If a = 1, then lim,_,o+ (sin(1/x) 4+ 2) is undefined because of the oscil-
lating function sin(1/x). So when a = 1, f is NOT differentiable at
z = 0.

If a < 1, then lim,_,o+ 22! (sin(1/x) + 2) = oo because
1 1

lim z " = lim . =0
z—0+ z—0t+t 172

So when a < 1, f is NOT differentiable at = = 0.
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