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For each computation of limits in this test, if the limit does not
exist, indicate whether it diverges to —oco or +oco.



1. Each part of this question is worth 1 mark.

(a) (1pt) For f(z) = (1 + 22)\/z, compute f'(1).
Solution. The derivative of f(z) is

Fia) = apa+ 1+ o) (52

then f/(1) =2+ (2)(1/2) =2+1=3.

(b) (1pt) There is a car on a highway, whose location at time ¢ is given
by y(t) = 80t + 30cost. Find its instantaneous speed at t = 7/2.
(Ignore the units.)

Solution. The derivative of y(t) is y/(t) = 80 —30sint. The instan-
taneous speed at t = /2 is

y'(m) = 80 — 30sin(7/2) = 80 — 30 = 50.



2. Each part of this question is worth 2 marks. You have to show all
your work in order to get credit.

(a)

(2pt) Find the equation of the tangent line to the graph of y =
sinz +e* atx=0.

Solution. The derivative of y = sinx +¢e* is ¥y’ = cosx + €%, and so
the slope of the tangent line at x = 0 is cos 04 €? = 2. The equation
of the tangent line is y = (sin0 + €%) + 2z, ie., y = 1 + 2.

(2pt) Show that there is a real number z such that 2% — 1 = tan(z).

Solution. We let f(x) = 2> — 1 — tan(z). This is a continuous
function on [—7/4,0]. We compute

f(=n/4) =7%/16 — 1 — (=1) = 7%/16 > 0

and
f0)=0-1-0=-1<0.

Therefore, by the Intermediate Value Theorem, there exists = €
(—m/4,0) such that f(z) = 0, as desired.



3. This question is worth 4 marks. You have to show all your work in
order to get credit.

Use the definition of the derivative to find a and b such that the following
function

2° +azx+0b if <0
xQSin(l) if >0

x

fz) =

is differentiable at = 0. You must justify your answer.

Solution. If f(z) is differentiable at = 0, then f(x) is continuous at
x =0 and so,

lim f(z) = £(0)-

z—0
We compute f(0) = b, while lim,_,o f(x) is computed using both lateral
limits:
lim f(z) = lim z° +ax+b=>b,

z—0~ z—0~

while lim,_,o+ f(x) = lim,_,o+ 2 sin(1/z) = 0 by Squeeze Theorem. In-
deed, —1 < sin(1/x) < 1 and so, —2? < z%sin(1/2) < 22 and so, as
x — 0%, we get that 22sin(1/z) — 0, as claimed. So, f(z) is continuous
at £ =0 if b = 0. In particular, this means that f(0) =b=0.

Now, in order for f(x) be differentiable at © = 0 we need the following
limit to exist:

lim 7}‘1(1‘) — f(0) = lim 7}”(1‘) —0 = lim M

—0 x—0 z—0 €T =0 I

Again we need to compute both lateral limits. We get

lim @ = lim M = lim xsin(1l/z) =0,

z—0t X z—0t x z—0t

by Squeeze Theorem, again. Indeed, —z < xsin(1/z) < z for x — 0
and so, the Squeeze Theorem yields that lim,_,o+ 2sin(1/z) = 0 since
lim,_,g+ z = lim,_,g+ —x = 0.

We also compute

5
. flz .z’ tax .
th: lim — = lim 2*+a=a.
r—0— X r—0— X r—0—

Therefore, f(z) is differentiable at = 0 if a = 0.
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e For each computation of limits in this test, if the limit does
not exist, indicate whether it diverges to —oo or +oo.

e Simplify all your answers as much as possible and express answers in
terms of fractions or constants such as 15, v/e or In(4) rather than
decimals.



1. Each part of this question is worth 1 mark, and the correct answer will
get the full mark.

(a) (1pt) For f(x) = \/ElJr T compute f'(1).

Solution. The derivative of f(z) is

B 1 1
23 (Vo + 17

then f'(1) = —(3)(3) = —3.

(b) (1pt) There is a cyclist on 10th Avenue, whose location at time
t is given by y(t) = 15t — 5sint. Find its instantaneous speed at
t = m. (Ignore the units.)
Solution. The derivative of y(t) is y/(t) = 15 — 5cost. The
instantaneous speed at t = 7 is

f'(x) =

y'(m) = 15 — 5cos(m) = 15 + 5 = 20.



2. Each part of this question is worth 2 marks. You have to show all
your work in order to get credit.

(a)

(2pt) Find the equation of the tangent line to the graph of y =
2e” +cosx at v = 0.

Solution. The derivative of y = 2e* 4+ cosx is ¢y = 2e” — sinz,
and so the slope of the tangent line at x = 0 is 3/(0) = 2. The
equation of the tangent line is y = (2€° + cos(0)) + 2(z — 0), i.e.
y =3+ 2.

(2pt) Show that there is a real number x satisfying the equation
22? = tan(z) + 1

Solution. We let f(x) = 22% — tan(z) — 1. This is a continuous
function on [—7/4,0]. We compute

f(=m/4) = 27%/16 =1 = (=1) = 7°/8 > 0

and
f(0)=0-1-0=-1<0.

Therefore, by the Intermediate Value Theorem, there exists x €
(—m/4,0) such that f(z) =0, as desired.



3. This question is worth 4 marks. You have to show all your work
in order to get credit.

Use the definition of the derivative to find a and b such that the fol-
lowing function

x2sin(%)+a ifx <0

flz) =
322+ (2+ bz ifx > 0.

is differentiable at x = 0. You must justify your answer.

Solution. If f(x) is differentiable at x = 0, then f(x) is continuous
at r = 0 and so,

lim f(x) = £(0) = 0. (1)

z—0
We compute lim, o f(x) using both lateral limits. The right-hand
limit is lim, 0+ 32% + (2 + b)z = 0, as desired. The left-hand limit
exists by the Squeeze Theorem: Indeed, since —1 <sin(1/z) < 1 and
so, —z? < x%sin(1/z) < 22, we have lim,_,o- 2?sin (1) = 0. Therefore

1
1. _ 1 2 . - _
. flw) = Jip asin () ta=a

In order to satisfy equality (1) above we need a = 0, and hence f(z)
i1s continuous at x = 0.

Now, in order for f(z) be differentiable at x = 0 we need the following
limit to exist:

li 1O =IO gy J@ 20y, J@)

x—0 x—0 x—0 x z—0 X

Again we need to compute both lateral limits. We get

24 1
lim J@) = lim 2~ sin(l/z) = lim zsin(1/x) =0,
—0- X z—0~ X z—0~

by Squeeze Theorem again. Indeed, —z < zsin(1/x) < x for z — 07
and so, the Squeeze Theorem yields that lim, - xsin(1/z) = 0 since
lim, ,o- x = lim,_,o- —xz = 0.

We also compute



2
2
i L8 gy 2 CEOT @b =24

z—0t+t X z—07t €T z—07t

Since f(x) is differentaible at x = 0 if

lim _f(sc) = lim —f(x),
r—0- X z—0t X

we need 2 + b = 0 and therefore b = —2.
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