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For each computation of limits in this test, if the limit does not
exist, indicate whether it diverges to —oco or +oco.



1. Each part of this question is worth 1 mark.

(a)

(1pt) Find the a-coordinates of the local minimum points of the
function f(x) = 23 — 3z + 5 defined on the whole real line.
Solution. We have f'(x) = 322 — 3 = 3(x — 1)(z + 1). Hence the
critical points are 1 and —1. We also have no singular point. Using
the second derivative test, we get: f”(x) = 6z, f”(1) =6 > 0 and
f"(—=1) = =6 < 0. Hence = = 1 is the local minimum of f(x).

(1pt) Let T5(z) be the third degree Taylor polynomial about z = 0
of g(z) = ;. Evaluate T5(0).

Solution. We have T5(0) = ¢’(0) so we just need to compute ¢’ (0).
By direct calculations, we get

ron 1
g(m)—m

Hence T4(0) = ¢'(0) = 1.



2. You have to show all your work in order to get credit.

(a) (2pt) Find the z-coordinates of the global maximum points of
h(z) = 2° — 52 + 5 on [0, 2.
Solution. By the Extreme Value Theorem, the candidates for the
global maxima are:
+ end points: 0 and 2
+ critical points: h/(c) = 5¢* —5 = 0. Hence ¢* = 1 so ¢ = 1 and
—1. But —1 is not in the interval [0,2]. So 1 is the only critical
point in this case.
+ singular points: NONE
So we have three candidates for the global maximum: 0, 1 and 2.
Also, h(0) = 5;h(1) = 1 and h(2) = 32 — 10 + 5 = 27. Hence the
coordinate of the global maximum is (2, 27).

(b) (2pt) Let T, (z) be the nth degree Taylor polynomial about z = 0
for the function f(z) = sin(z). Determine whether To9(0.1) gives an
underestimate or overestimate of sin(0.1). Justify your answer.

Solution. 7,,(0.1) gives an underestimate of sin(0.1) when R,,(0.1) =
sin(0.1) — 75,(0.1) > 0. Similarly, 7,,(0.1) gives an overestimate of
sin(0.1) when R, (0.1) = sin(0.1) — 7,,(0.1) < 0.

By the Lagrange Remainder Theorem, we obtain Rgg(0.1) = f(ll(g)(;!(c) (0.1)100
for some ¢ between 0 and 0.1.

We have that (note the patterns):
FOe) = f9(e) = FO(e) = ... = f4(e) = sin(c)
FD(e) = FP(e) = fOe) = ... = [T (c) = cos(c)
F&(e) = ) = F10(e) = . = [ (e) = —sinm
E®(c) = k() = fI(c) = ... = fUF3)(c) = — cos(c)

for 7 =0,1,2,....

Thus f(190)(¢) = f(#25)(¢) = sin ¢ > 0 since ¢ is between 0 and 0.1 (which
means c is in the first quadrant). Hence Rgg(0.1) > 0 which means that
T99(0.1) gives an underestimate of sin(0.1)




3. You have to show all your work in order to get credit.
Let {(z) = % + 622 + 42 + 2.

(a) (2pt) Prove that ¢(z) has at least one critical point.
(b) (2pt) Prove that ¢(x) has at most one critical point.

Solution. ¢(z) = z* + 622 + 4x + 2 has exactly one critical point means
that f(x) = ¢'(z) = 42 4+ 12z + 4 = 0 has exactly one root.

Step 1: AT LEAST ONE root using IVT.

We have that the function f(z) is continuous and differentiable every-
where. Also, f(0) =4 and f(—1) = —12. So by the IVT, f(z) = 0 has
at least one root ¢ in [—1,0].

Step 2: AT MOST ONE root using MVT.
Suppose that there is another root d (that is f(d) = 0). Then by MVT
(or Rolle’s Theorem), there is some z between ¢ and d such that f/(z) =

% = 0. Compute f’(z) = 1222 + 12. Hence 1222 + 12 = 0, that is

2% = —1 which is impossible. So there is no other real root of f(z).
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For each computation of limits in this test, if the limit does not
exist, indicate whether it diverges to —oco or +oco.



1. Each part of this question is worth 1 mark.

(a)

(1pt) Find the z-coordinates of the local maximum points of the
function f(x) = 23 — 122 — 1 defined on the whole real line.

Solution. We have f/(x) = 32% — 12 = 3(2? —4) = 3(z — 2)(x + 2).
Hence the critical points are 2 and —2. We also have no singu-
lar point. Using the second derivative test, we get: f”(x) = 6,
f"(2) =12 > 0 and f’(-2) = =12 < 0. Hence z = —2 is the
z-coordinate of the local maximum of f(z).

(1pt) Let T5(x) be the third degree Taylor polynomial about z = 1
of g(x) = x2e®. Evaluate T4(1).

Solution. We have T4(1) = ¢’(1) so we just need to compute ¢'(1).
By direct calculations, we get

g (x) = 2xe® + 2%e®

Hence T4(1) = ¢'(1) = 3e.



2. You have to show all your work in order to get credit.
(a) (2pt) Find the x-coordinates of the global minimum points of

h(z) = 32* — 823 + 622 + 1 on [—1,1].

Solution. By the Extreme Value Theorem, the candidates for the
global minima are:

+ end points: -1 and 1

+ critical points: h/(c) = 12¢® —24¢2 +12¢ = 12¢(c—1)2? = 0. Hence
¢=0and ¢ =1 (already an endpoint).

+ singular points: NONE

We have three candidates for the global maximum: —1, 0 and 1.
Compute, h(—1) = 18, h(0) = 1 and h(1) = 2. The z-coordinate of
the global minimum is x = 0.

(b) (2pt) Let T, (z) be the nth degree Taylor polynomial about z = 0
for the function f(z) = sin(z). Determine whether T1¢1(0.1) gives
an underestimate or overestimate of sin(0.1). Justify your answer.

Solution. 7,(0.1) gives an underestimate of sin(0.1) when
R, (0.1) = sin(0.1) — T5,(0.1) > 0

Similarly, T;,(0.1) gives an overestimate of sin(0.1) when
R, (0.1) = sin(0.1) — T;,(0.1) < 0

By the Lagrange Remainder Theorem, we obtain

f(102) (c) 102
1) = — (0.1
R101(0.1) 1021 (0.1)

for some ¢ between 0 and 0.1. Compute:
FOe) = FD(e) = FO(e) = .. = F49)(¢) = sin(c)
fO(e) = FP(e) = FO ) = ... = [T (c) = cos(c)

) = fO) = f1e) = .. = FY () = —sin(c)
FPe) = D) = () = oo = fY () = —cos(e)

for 7=0,1,2,....

Thus f(102)(¢) = f(#2542)(¢) = —sinc < 0 since ¢ is between 0 and

0.1 (which means c is in the first quadrant). Hence R101(0.1) < 0
which means that T30;(0.1) gives an overestimate of sin(0.1).



3. You have to show all your work in order to get credit.
Let ((z) = 25 + 42? + z + 2.

(a) (2pt) Prove that ¢(z) has at least one critical point.
(b) (2pt) Prove that ¢(x) has at most one critical point.

Solution. /(x) = 2% 4+ 422 + x + 2 has exactly one critical point means
that f(x) = ¢'(z) = 62° + 8z + 1 = 0 has exactly one root.

Step 1: AT LEAST ONE root using IVT.

We have that the function f(z) is continuous and differentiable every-
where. Also, f(0) =1 and f(—1) = —13. So by the IVT, f(z) = 0 has
at least one root ¢ in [—1,0].

Step 2: AT MOST ONE root using MVT.

Suppose that there is another root d (that is f(d) = 0). Then by MVT
(or Rolle’s Theorem), there is some z between ¢ and d such that f/(z) =
% = 0. Compute f’(z) = 30z* + 8. Since z* > 0, f'(z) > 0 for all
x. There is no other real root of f(x).
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