Quiz 1

2017-09-22

Last name First name Student number Email

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

- **1.** Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to -2} \sqrt{1 - x^3}$$

Solution.

$$\lim_{x \to -2} \sqrt{1 - x^3} = \sqrt{1 - (-2)^3} = \sqrt{9} = 3.$$

(b) (1 pt) Compute

$$\lim_{x \to +\infty} \frac{5x^2 + x - 6}{3x^2 - 7x + 2}$$

Solution. We divide by x^2 both numerator and denominator and obtain:

$$\lim_{x \to +\infty} \frac{\frac{5x^2 + x - 6}{x^2}}{\frac{3x^2 - 7x + 2}{x^2}} = \lim_{x \to +\infty} \frac{5 + \frac{1}{x} - \frac{6}{x}}{3 - \frac{7}{x} + \frac{2}{x^2}} = \frac{5}{3}.$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to -2} \frac{|x+2|}{x^2 - 4}$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$\lim_{x \to -2^{-}} \frac{|x+2|}{x^2 - 4} = \lim_{x \to -2^{-}} \frac{-(x+2)}{(x-2)(x+2)} = \lim_{x \to -2^{-}} \frac{-1}{x-2} = \frac{1}{4}$$

and

$$\lim_{x \to -2^+} \frac{|x+2|}{x^2 - 4} = \lim_{x \to -2^+} \frac{x+2}{(x-2)(x+2)} = \lim_{x \to -2^+} \frac{1}{x-2} = -\frac{1}{4}.$$

Since the lateral limits don't match, we conclude that

$$\lim_{x \to -2} \frac{|x+2|}{x^2 - 4} \text{ does not exist.}$$

(b) (2 pt) Compute

$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1}$$

Solution. We apply the conjugate:

$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1} = \lim_{x \to 1} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}$$

and so, we obtain

$$\lim_{x \to 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{1}{\sqrt{x+3}+2} = \frac{1}{\sqrt{1+3}+2} = \frac{1}{4}$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the real number a such that $\lim_{x\to 1} f(x)$ exists for the function

$$f(x) = \begin{cases} (x-1) \cdot \sin\left(\frac{1}{x-1}\right) & \text{if } x > 1\\ x^2 + ax + 1 & \text{if } x < 1. \end{cases}$$

Solution. First of all, the limit exists if

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x).$$

On the other hand, $\lim_{x\to 1^-} x^2 + ax + 1 = a+2$ and so, all we need to ensure now is that

$$\lim_{x \to 1^+} (x-1) \sin\left(\frac{1}{x-1}\right) = a+2.$$

We compute $\lim_{x\to 1^+} (x-1) \sin\left(\frac{1}{x-1}\right) = 0$ using Squeeze Theorem. Indeed, as $x\to 1^+$, we have that

$$-1 \le \sin\left(\frac{1}{x-1}\right) \le 1$$

and after multiplying by x - 1 (which is positive, when $x \to 1^+$), we get

$$-(x-1) \le (x-1) \cdot \sin\left(\frac{1}{x-1}\right) \le (x-1).$$

Letting $x \to 1^+$, we get that both the left-most and the right-most functions (x-1 and 1-x) converge to 0, and this forces (by Squeeze Theorem) that also $\lim_{x\to 1^+} (x-1) \cdot \sin\left(\frac{1}{x-1}\right) = 0$.

In conclusion, the value of a which makes $\lim_{x\to 1} f(x)$ exist is a = -2 since then a + 2 = 0.

- 1. Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to 5} \sqrt[3]{x^2 - 17}$$

Solution.

$$\lim_{x \to 5} \sqrt[3]{x^2 - 17} = \lim_{x \to 5} \sqrt[3]{5^2 - 17} = \sqrt[3]{8} = 2.$$

(b) (1 pt) Compute

$$\lim_{x \to -\infty} \frac{-5x^2 + x - 2}{-3x^2 - 7x + 3}$$

Solution. We divide by x^2 both numerator and denominator and obtain:

$$\lim_{x \to -\infty} \frac{\frac{-5x^2 + x - 2}{x^2}}{\frac{-3x^2 - 7x + 3}{x^2}} = \lim_{x \to -\infty} \frac{-5 + \frac{1}{x} - \frac{2}{x^2}}{-3 - \frac{7}{x} + \frac{3}{x^2}} = \frac{-5}{-3} = \frac{5}{3}.$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to 2} \frac{|x-2|}{x^2 - 3x + 2}$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$\lim_{x \to 2^{-}} \frac{|x-2|}{x^2 - 3x + 2} = \lim_{x \to 2^{-}} \frac{-(x-2)}{(x-2)(x-1)} = \frac{-1}{x-1} = -1$$

and

$$\lim_{x \to 2^+} \frac{|x-2|}{x^2 - 3x + 2} = \lim_{x \to 2^+} \frac{x-2}{(x-2)(x-1)} = \frac{1}{x-1} = 1.$$

Since the lateral limits don't match, we conclude that

$$\lim_{x \to 2} \frac{|x-2|}{x^2 - 3x + 2}$$
 does not exist.

(b) (2 pt) Compute

$$\lim_{x \to 1} \frac{\sqrt{x+8} - 3}{1-x}$$

Solution. We apply the conjugate:

$$\lim_{x \to 1} \frac{\sqrt{x+8}-3}{1-x} = \lim_{x \to 1} \frac{(\sqrt{x+8}-3)(\sqrt{x+8}+3)}{(1-x)(\sqrt{x+8}+3)}$$

and so, we obtain

$$\lim_{x \to 1} \frac{x+8-9}{(1-x)(\sqrt{x+8}+3)} = \lim_{x \to 1} \frac{x-1}{(1-x)(\sqrt{x+8}+3)} = \lim_{x \to 1} \frac{-1}{\sqrt{x+8}+3} = \frac{-1}{\sqrt{1+8}+3} = \frac{-1}{6}$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the real number a such that $\lim_{x\to 1} f(x)$ exists for the function

$$f(x) = \begin{cases} (x-1) \cdot \cos\left(\frac{1}{x-1}\right) & \text{if } x > 1\\ x^2 - 1 + a & \text{if } x < 1. \end{cases}$$

Solution. First of all, the limit exists if

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x).$$

On the other hand, $\lim_{x\to 1^-} x^2 - 1 + a = a$ and so, all we need to ensure now is that

$$\lim_{x \to 1^{-}} (x - 1) \cos\left(\frac{1}{x - 1}\right) = a.$$

We compute $\lim_{x\to 1^+} (x-1) \cos\left(\frac{1}{x-1}\right) = 0$ using Squeeze Theorem. Indeed, as $x\to 1^+$, we have that

$$-1 \le \cos\left(\frac{1}{x-1}\right) \le 1$$

and after multiplying by x - 1 (which is positive, when $x \to 1^+$), we get

$$-(x-1) \le (x-1) \cdot \cos\left(\frac{1}{x-1}\right) \le (x-1).$$

Letting $x \to 1^+$, we get that both the left-most and the right-most functions (x-1 and 1-x) converge to 0, and this forces (by Squeeze Theorem) that also $\lim_{x\to 1^+} (x-1) \cdot \cos\left(\frac{1}{x-1}\right) = 0$.

In conclusion, the value of a which makes $\lim_{x\to 1} f(x)$ exist is a = 0.

- 1. Each part of this question is worth 1 mark.
 - (a) (1 pt) Compute

$$\lim_{x \to 2} \frac{1 - x^2}{\sqrt{1 + x^3}}$$

Solution.

$$\lim_{x \to 2} \frac{1 - x^2}{\sqrt{1 + x^3}} = \lim_{x \to 2} \frac{1 - 2^2}{\sqrt{1 + 2^3}} = -1$$

(b) (1 pt) Compute

$$\lim_{x \to +\infty} \frac{1 - 5x + 2x^3}{2 + 4x^2 - x^3}$$

Solution. We divide by x^3 both numerator and denominator and obtain:

$$\lim_{x \to +\infty} \frac{\frac{1-5x+2x^3}{x^3}}{\frac{2+4x^2-x^3}{x^3}} = \lim_{x \to +\infty} \frac{\frac{1}{x^3} - \frac{5}{x^2} + 2}{\frac{2}{x^3} + \frac{4}{x} - 1} = -2.$$

- 2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
 - (a) (2 pt) Compute

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{|x+1|}$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$\lim_{x \to -1^{-}} \frac{x^2 + 3x + 2}{|x+1|} = \lim_{x \to -1^{-}} \frac{(x+1)(x+2)}{-(x+1)} = \lim_{x \to -1^{-}} -(x+2) = -1$$

and

$$\lim_{x \to -1^+} \frac{x^2 + 3x + 2}{|x+1|} = \lim_{x \to -1^+} \frac{(x+1)(x+2)}{(x+1)} = \lim_{x \to -1^+} (x+2) = 1.$$

Since the lateral limits don't match, we conclude that

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{|x+1|}$$
 does not exist.

(b) (2 pt) Compute

$$\lim_{x \to -2} \frac{1 - \sqrt{x+3}}{x+2}$$

Solution. We apply the conjugate:

$$\lim_{x \to -2} \frac{1 - \sqrt{x+3}}{x+2} = \lim_{x \to -2} \frac{(1 - \sqrt{x+3})(1 + \sqrt{x+3})}{(x+2)(1 + \sqrt{x+3})}$$

and so, we obtain

$$\lim_{x \to -2} \frac{1 - (x+3)}{(x+2)(1+\sqrt{x+3})} = \lim_{x \to -2} \frac{-x-2}{(x+2)(1+\sqrt{x+3})} = \lim_{x \to -2} \frac{-1}{1+\sqrt{x+3}} = -\frac{1}{2}$$

3. This question is worth 4 marks. You have to show all your work in order to get credit.

Find the real number a such that $\lim_{x\to 0} f(x)$ exists for the function

$$f(x) = \begin{cases} a(x+1)^2 - 1 & \text{if } x > 0\\ 1 + x^2 \cos\left(\frac{1}{x}\right) & \text{if } x < 0. \end{cases}$$

Solution. First of all, the limit exists if

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x).$$

On the other hand, $\lim_{x\to 0^+} a(x+1)^2 - 1 = a-1$ and so, all we need to ensure now is that

$$\lim_{x \to 0^-} \left(1 + x^2 \cos\left(\frac{1}{x}\right) \right) = a - 1.$$

We compute $\lim_{x\to 0^-} x^2 \cos\left(\frac{1}{x}\right) = 0$ using Squeeze Theorem. Indeed, as $x \to 0^-$, we have that

$$-1 \le \cos\left(\frac{1}{x}\right) \le 1$$

and after multiplying by x^2 , we get

$$-x^2 \le x^2 \cos\left(\frac{1}{x}\right) \le x^2.$$

Letting $x \to 0^-$, we get that both the left-most and the right-most functions $(-x^2 \text{ and } x^2)$ converge to 0, and this forces (by Squeeze Theorem) that also $\lim_{x\to 0^-} x^2 \cos\left(\frac{1}{x}\right) = 0$. Therefore

$$\lim_{x \to 0^-} \left(1 + x^2 \cos\left(\frac{1}{x}\right) \right) = 1$$

In conclusion, the value of a which makes $\lim_{x\to 0} f(x)$ exist is a = 2 since then a - 1 = 1.