Quiz 1

2017-09-22

Last name

First name

Student number

Email ...

Grade

For each computation of limits in this test, if the limit does not exist, indicate whether it diverges to $-\infty$ or $+\infty$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow-2} \sqrt{1-x^{3}}
$$

Solution.

$$
\lim _{x \rightarrow-2} \sqrt{1-x^{3}}=\sqrt{1-(-2)^{3}}=\sqrt{9}=3
$$

(b) (1 pt) Compute

$$
\lim _{x \rightarrow+\infty} \frac{5 x^{2}+x-6}{3 x^{2}-7 x+2}
$$

Solution. We divide by x^{2} both numerator and denominator and obtain:

$$
\lim _{x \rightarrow+\infty} \frac{\frac{5 x^{2}+x-6}{x^{2}}}{\frac{3 x^{2}-7 x+2}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{5+\frac{1}{x}-\frac{6}{x}}{3-\frac{7}{x}+\frac{2}{x^{2}}}=\frac{5}{3}
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow-2} \frac{|x+2|}{x^{2}-4}
$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$
\lim _{x \rightarrow-2^{-}} \frac{|x+2|}{x^{2}-4}=\lim _{x \rightarrow-2^{-}} \frac{-(x+2)}{(x-2)(x+2)}=\lim _{x \rightarrow-2^{-}} \frac{-1}{x-2}=\frac{1}{4}
$$

and

$$
\lim _{x \rightarrow-2^{+}} \frac{|x+2|}{x^{2}-4}=\lim _{x \rightarrow-2^{+}} \frac{x+2}{(x-2)(x+2)}=\lim _{x \rightarrow-2^{+}} \frac{1}{x-2}=-\frac{1}{4}
$$

Since the lateral limits don't match, we conclude that

$$
\lim _{x \rightarrow-2} \frac{|x+2|}{x^{2}-4} \text { does not exist. }
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}
$$

Solution. We apply the conjugate:

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=\lim _{x \rightarrow 1} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}
$$

and so, we obtain
$\lim _{x \rightarrow 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x+3}+2)}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}=\frac{1}{4}$
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the real number a such that $\lim _{x \rightarrow 1} f(x)$ exists for the function

$$
f(x)=\left\{\begin{array}{ccc}
(x-1) \cdot \sin \left(\frac{1}{x-1}\right) & \text { if } & x>1 \\
x^{2}+a x+1 & \text { if } & x<1
\end{array}\right.
$$

Solution. First of all, the limit exists if

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
$$

On the other hand, $\lim _{x \rightarrow 1-} x^{2}+a x+1=a+2$ and so, all we need to ensure now is that

$$
\lim _{x \rightarrow 1^{+}}(x-1) \sin \left(\frac{1}{x-1}\right)=a+2
$$

We compute $\lim _{x \rightarrow 1^{+}}(x-1) \sin \left(\frac{1}{x-1}\right)=0$ using Squeeze Theorem. Indeed, as $x \rightarrow 1^{+}$, we have that

$$
-1 \leq \sin \left(\frac{1}{x-1}\right) \leq 1
$$

and after multiplying by $x-1$ (which is positive, when $x \rightarrow 1^{+}$), we get

$$
-(x-1) \leq(x-1) \cdot \sin \left(\frac{1}{x-1}\right) \leq(x-1)
$$

Letting $x \rightarrow 1^{+}$, we get that both the left-most and the right-most functions ($x-1$ and $1-x$) converge to 0 , and this forces (by Squeeze Theorem) that also $\lim _{x \rightarrow 1^{+}}(x-1) \cdot \sin \left(\frac{1}{x-1}\right)=0$.
In conclusion, the value of a which makes $\lim _{x \rightarrow 1} f(x)$ exist is $a=-2$ since then $a+2=0$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow 5} \sqrt[3]{x^{2}-17}
$$

Solution.

$$
\lim _{x \rightarrow 5} \sqrt[3]{x^{2}-17}=\lim _{x \rightarrow 5} \sqrt[3]{5^{2}-17}=\sqrt[3]{8}=2
$$

(b) (1 pt) Compute

$$
\lim _{x \rightarrow-\infty} \frac{-5 x^{2}+x-2}{-3 x^{2}-7 x+3}
$$

Solution. We divide by x^{2} both numerator and denominator and obtain:

$$
\lim _{x \rightarrow-\infty} \frac{\frac{-5 x^{2}+x-2}{x^{2}}}{\frac{-3 x^{2}-7 x+3}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{-5+\frac{1}{x}-\frac{2}{x^{2}}}{-3-\frac{7}{x}+\frac{3}{x^{2}}}=\frac{-5}{-3}=\frac{5}{3} .
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow 2} \frac{|x-2|}{x^{2}-3 x+2}
$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-3 x+2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{(x-2)(x-1)}=\frac{-1}{x-1}=-1
$$

and

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x^{2}-3 x+2}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{(x-2)(x-1)}=\frac{1}{x-1}=1
$$

Since the lateral limits don't match, we conclude that

$$
\lim _{x \rightarrow 2} \frac{|x-2|}{x^{2}-3 x+2} \text { does not exist. }
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x+8}-3}{1-x}
$$

Solution. We apply the conjugate:

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x+8}-3}{1-x}=\lim _{x \rightarrow 1} \frac{(\sqrt{x+8}-3)(\sqrt{x+8}+3)}{(1-x)(\sqrt{x+8}+3)}
$$

and so, we obtain
$\lim _{x \rightarrow 1} \frac{x+8-9}{(1-x)(\sqrt{x+8}+3)}=\lim _{x \rightarrow 1} \frac{x-1}{(1-x)(\sqrt{x+8}+3)}=\lim _{x \rightarrow 1} \frac{-1}{\sqrt{x+8}+3}=\frac{-1}{\sqrt{1+8}+3}=\frac{-1}{6}$
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the real number a such that $\lim _{x \rightarrow 1} f(x)$ exists for the function

$$
f(x)=\left\{\begin{array}{ccc}
(x-1) \cdot \cos \left(\frac{1}{x-1}\right) & \text { if } & x>1 \\
x^{2}-1+a & \text { if } & x<1
\end{array}\right.
$$

Solution. First of all, the limit exists if

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
$$

On the other hand, $\lim _{x \rightarrow 1^{-}} x^{2}-1+a=a$ and so, all we need to ensure now is that

$$
\lim _{x \rightarrow 1^{-}}(x-1) \cos \left(\frac{1}{x-1}\right)=a
$$

We compute $\lim _{x \rightarrow 1^{+}}(x-1) \cos \left(\frac{1}{x-1}\right)=0$ using Squeeze Theorem. Indeed, as $x \rightarrow 1^{+}$, we have that

$$
-1 \leq \cos \left(\frac{1}{x-1}\right) \leq 1
$$

and after multiplying by $x-1$ (which is positive, when $x \rightarrow 1^{+}$), we get

$$
-(x-1) \leq(x-1) \cdot \cos \left(\frac{1}{x-1}\right) \leq(x-1)
$$

Letting $x \rightarrow 1^{+}$, we get that both the left-most and the right-most functions ($x-1$ and $1-x$) converge to 0 , and this forces (by Squeeze Theorem) that also $\lim _{x \rightarrow 1^{+}}(x-1) \cdot \cos \left(\frac{1}{x-1}\right)=0$.
In conclusion, the value of a which makes $\lim _{x \rightarrow 1} f(x)$ exist is $a=0$.

1. Each part of this question is worth 1 mark.
(a) (1 pt) Compute

$$
\lim _{x \rightarrow 2} \frac{1-x^{2}}{\sqrt{1+x^{3}}}
$$

Solution.

$$
\lim _{x \rightarrow 2} \frac{1-x^{2}}{\sqrt{1+x^{3}}}=\lim _{x \rightarrow 2} \frac{1-2^{2}}{\sqrt{1+2^{3}}}=-1
$$

(b) (1 pt) Compute

$$
\lim _{x \rightarrow+\infty} \frac{1-5 x+2 x^{3}}{2+4 x^{2}-x^{3}}
$$

Solution. We divide by x^{3} both numerator and denominator and obtain:

$$
\lim _{x \rightarrow+\infty} \frac{\frac{1-5 x+2 x^{3}}{x^{3}}}{\frac{2+4 x^{2}-x^{3}}{x^{3}}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x^{3}}-\frac{5}{x^{2}}+2}{\frac{2}{x^{3}}+\frac{4}{x}-1}=-2 .
$$

2. Each part of this question is worth 2 marks. You have to show all your work in order to get credit.
(a) (2 pt) Compute

$$
\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{|x+1|}
$$

Solution. We need to compute left and right limits and then compare our answers. So,

$$
\lim _{x \rightarrow-1^{-}} \frac{x^{2}+3 x+2}{|x+1|}=\lim _{x \rightarrow-1^{-}} \frac{(x+1)(x+2)}{-(x+1)}=\lim _{x \rightarrow-1^{-}}-(x+2)=-1
$$

and

$$
\lim _{x \rightarrow-1^{+}} \frac{x^{2}+3 x+2}{|x+1|}=\lim _{x \rightarrow-1^{+}} \frac{(x+1)(x+2)}{(x+1)}=\lim _{x \rightarrow-1^{+}}(x+2)=1
$$

Since the lateral limits don't match, we conclude that

$$
\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{|x+1|} \text { does not exist. }
$$

(b) (2 pt) Compute

$$
\lim _{x \rightarrow-2} \frac{1-\sqrt{x+3}}{x+2}
$$

Solution. We apply the conjugate:

$$
\lim _{x \rightarrow-2} \frac{1-\sqrt{x+3}}{x+2}=\lim _{x \rightarrow-2} \frac{(1-\sqrt{x+3})(1+\sqrt{x+3})}{(x+2)(1+\sqrt{x+3})}
$$

and so, we obtain
$\lim _{x \rightarrow-2} \frac{1-(x+3)}{(x+2)(1+\sqrt{x+3})}=\lim _{x \rightarrow-2} \frac{-x-2}{(x+2)(1+\sqrt{x+3})}=\lim _{x \rightarrow-2} \frac{-1}{1+\sqrt{x+3}}=-\frac{1}{2}$
3. This question is worth 4 marks. You have to show all your work in order to get credit.
Find the real number a such that $\lim _{x \rightarrow 0} f(x)$ exists for the function

$$
f(x)=\left\{\begin{array}{lll}
a(x+1)^{2}-1 & \text { if } & x>0 \\
1+x^{2} \cos \left(\frac{1}{x}\right) & \text { if } & x<0
\end{array}\right.
$$

Solution. First of all, the limit exists if

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)
$$

On the other hand, $\lim _{x \rightarrow 0^{+}} a(x+1)^{2}-1=a-1$ and so, all we need to ensure now is that

$$
\lim _{x \rightarrow 0^{-}}\left(1+x^{2} \cos \left(\frac{1}{x}\right)\right)=a-1
$$

We compute $\lim _{x \rightarrow 0^{-}} x^{2} \cos \left(\frac{1}{x}\right)=0$ using Squeeze Theorem. Indeed, as $x \rightarrow 0^{-}$, we have that

$$
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1
$$

and after multiplying by x^{2}, we get

$$
-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2}
$$

Letting $x \rightarrow 0^{-}$, we get that both the left-most and the right-most functions ($-x^{2}$ and x^{2}) converge to 0 , and this forces (by Squeeze Theorem) that also $\lim _{x \rightarrow 0^{-}} x^{2} \cos \left(\frac{1}{x}\right)=0$. Therefore

$$
\lim _{x \rightarrow 0^{-}}\left(1+x^{2} \cos \left(\frac{1}{x}\right)\right)=1
$$

In conclusion, the value of a which makes $\lim _{x \rightarrow 0} f(x)$ exist is $a=2$ since then $a-1=1$.

