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CONTINUOUS-TIME WEAKLY SELF-AVOIDING WALK ON Z HAS
STRICTLY MONOTONE ESCAPE SPEED

BY YUCHENG LIUa

Department of Mathematics, University of British Columbia, ayliu135@math.ubc.ca

Weakly self-avoiding walk (WSAW) is a model of simple random walk
paths that penalizes self-intersections. On Z, Greven and den Hollander
proved in 1993 that the discrete-time weakly self-avoiding walk has an
asymptotically deterministic escape speed, and they conjectured that this
speed should be strictly increasing in the repelling strength parameter. We
study a continuous-time version of the model, give a different existence proof
for the speed, and prove the speed to be strictly increasing. The proof uses
a transfer matrix method implemented via a supersymmetric version of the
BFS–Dynkin isomorphism theorem, spectral theory, Tauberian theory, and
stochastic dominance.

1. Introduction. Weakly self-avoiding walk is a model based on the simple random
walk that penalizes self-intersections. In the discrete-time setting, it is also known as the
self-repellent walk and as the Domb–Joyce model for soft polymers [7]. In the model, every
self-intersection of the walk is penalized using a factor 1 − α, with parameter α ∈ (0,1). The
boundary value α = 0 corresponds to the simple random walk and α = 1 corresponds to the
strictly self-avoiding walk.

In dimension one, the strictly self-avoiding case α = 1 has only two walks, going left or
right, so it has escape speed equal to 1. Greven and den Hollander [8] proved in 1993 that
the weakly self-avoiding walk also escapes linearly from the origin as length goes to infinity,
with an asymptotically deterministic speed θ∗(α) ∈ (0,1) satisfying limα→0 θ∗(α) = 0 and
limα→1 θ∗(α) = 1. The result was extended to a central limit theorem by König in 1996 [9].
Their proofs use large deviation theory and local times of the simple random walk. In 2001,
van der Hofstad [16] gave another proof of the central limit theorem for α close to 1, using
the lace expansion.

The escape speed θ∗(α) is conjectured to be strictly increasing in the repelling strength
parameter α. The walk should escape faster if the self-repellency is stronger. But to our
knowledge, this has not been proved. In this paper, we study a continuous-time version of the
model. We prove this model also has an asymptotically deterministic speed and the speed is
strictly increasing in the repelling strength parameter. Our proof of the existence of escape
speed uses local times of the simple random walk and Tauberian theory. The monotonicity
of the speed is proved using stochastic dominance. The speed is qualitatively similar to the
speed in the discrete-time model [8], in the sense that they are both identified as the reciprocal
of the derivative of the largest eigenvalue of some operator.

The continuous-time weakly self-avoiding walk was studied in [1, 2] on Z
4, and a gener-

alization of the model was studied in [4] on the complete graph, both using supersymmetric
representation. Supersymmetric representation is a way of expressing certain functionals of
local times as an integral of differential forms. We give a brief introduction to the representa-
tion in Appendix A. It allows us to write the two-point function of the WSAW in a nice form
to apply the transfer matrix approach.
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There is an analogous continuous-time-and-space model based on Brownian motion called
the Edwards’ model. In this model, there is also an escape speed, first proved by Westwater in
1985 [18] using Brownian local times. The speed is very simple due to the Brownian scaling
property, and it is strictly increasing in the repelling strength parameter.

1.1. The continuous-time WSAW model and main results. We consider the continuous-
time nearest-neighbor simple random walk on Z, that is, the walk jumps left or right, each
with rate 1. Denote the walk by {X(t)}t≥0 and denote its expectation by Ei if X(0) = i. The
local time of X at x ∈ Z up to time T is defined by

(1.1) LT,x =
∫ T

0
1X(s)=x ds.

Notice that

L2
T ,x =

∫ T

0

∫ T

0
1X(t)=x1X(s)=x ds dt =

∫ T

0

∫ T

0
1X(t)=X(s)=x ds dt(1.2)

gives the self-intersection local time at x up to time T .
As in the discrete-time setting, we penalize self-intersections. Let g > 0 be the repelling

strength parameter. The weakly self-avoiding walk measure P
g,T
i , for walks starting from i,

is defined by the φ(t) = t2 case of the expectation

E
g,T
i

[
f (X)

]∝ Ei

(
e−g

∑∞
x=−∞ φ(LT,x)f (X)

)
.(1.3)

For i, j ∈ Z, we define

(1.4) Pij (g, T ) = Ei

(
e−g

∑∞
x=−∞ φ(LT,x)1X(T )=j

)
.

We use the Laplace transform with a complex parameter ν ∈ C. With p(t) = e−gφ(t)−νt , the
two-point function of the weakly self-avoiding walk from i to j is defined to be

Gij (g, ν) =
∫ ∞

0
Pij (g, T )e−νT dT =

∫ ∞
0

Ei

( ∞∏
x=−∞

p(LT,x)1X(T )=j

)
dT ,(1.5)

where the second equality follows from T = ∑∞
x=−∞ LT,x . A positive ν > 0 penalizes the

length of the walk and acts as a killing rate. The use of complex ν is mainly to apply our
complex Tauberian theorem, which transfers asymptotics of Gij to asymptotics of Pij ; the
relevant range of parameters will have Re (ν) ≤ 0. Our methods allow us to consider a more
general model. We only assume the function φ : [0,∞) → [0,∞) satisfies

φ(0) = 0,(H0)

φ(t) is differentiable for all t ≥ 0,(H1)

φ(t)/t is increasing,(H2)

lim
t→∞φ(t)/t = ∞,(H3)

φ′(t)e−gφ(t)−νt is a Schwartz function for all g > 0, ν ∈ R.(H4)

For example, φ(t) can be a polynomial φ(t) =∑M
k=2 akt

k with M ≥ 2, aM > 0, and ak ≥ 0
for all k.

By translation invariance, we can always start the walk at 0. The main result of the paper is
the following theorem, which asserts that the weakly self-avoiding walk has an escape speed
and the speed is strictly increasing in the repelling strength g. The theorem is stated for walks
going to the right, but walks going to the left have the same speed by symmetry. See Figure 1
for a plot of the speed.
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FIG. 1. Numerical evaluation of the escape speed θ(g) of the WSAW model (φ(t) = t2). The dots are the nu-
merical results, interpolated by cubic spline. The computation is based on truncating and discretizing the integral
operator Q (defined in (2.6)) at s = 100 and with step size 0.001. The numerical results suggest θ(g) ∼ Cg1/3

as g → 0. For the discrete-time model, this asymptotic relation is proved by van der Hofstad and den Hollander
in [17].

THEOREM 1.1. There exists an analytic function θ : (0,∞) → (0,∞) with θ ′ > 0 every-
where such that for all g > 0, ε > 0,

lim
T →∞P

g,T
0

(∣∣∣∣X(T )

T
− θ(g)

∣∣∣∣≥ ε
∣∣∣X(T ) > 0

)
= 0.(1.6)

We also have the following result on the mean end-to-end distance, which readily implies
Lp convergence of X(T )

T
to θ(g) for any positive even integer p and the convergence in

probability (1.6). The notation f (T ) ∼ h(T ) means limT →∞ f (T )/g(T ) = 1.

THEOREM 1.2. For the same θ(·) as in Theorem 1.1, for any g > 0 and any k ∈ N,

E
g,T
0

[
X(T )k

∣∣X(T ) > 0
]=

∑∞
j=1 jkP0j (g, T )∑∞
j=1 P0j (g, T )

∼ (
θ(g)T

)k
, T → ∞.(1.7)

As a by-product of the proofs, we obtain critical exponents for the two-point function,
the susceptibility, and the correlation lengths of integer orders. The critical exponents are the
same as for the strictly self-avoiding walk, and they are collected in the following theorem.
For all g > 0, we will define νc(g) to be the ν ∈ R at which an integral operator has operator
norm exactly 1, see Section 2.2. We will show this is consistent with the usual definition of
νc(g), which is by the property that

χ(g, ν) < ∞ if and only if ν > νc(g),(1.8)

where χ(g, ν) =∑∞
j=−∞ G0j (g, ν) is the susceptibility.

THEOREM 1.3. Let g > 0, ν ∈ R, and νc = νc(g) (defined in Section 2.2). There exist
nonzero constants A,B,C1,C2, . . . such that:
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(i) The critical two-point function Gij (g, νc) satisfies, as |j − i| → ∞,

Gij (g, νc) ∼ A

|j − i|d−2+η
= A, d = η = 1.(1.9)

(ii) The susceptibility χ(g, ν) satisfies, as ν → ν+
c ,

χ(g, ν) ∼ B(ν − νc)
−γ , γ = 1.(1.10)

(iii) For any k ∈ N, the correlation length of order k satisfies, as ν → ν+
c ,

ξk(g, ν) =
(∑∞

j=−∞|j |kG0j (g, ν)

χ(g, ν)

)1/k

∼ Ck(ν − νc)
−νk , νk = 1.(1.11)

The rest of the paper is organized as follows. In Section 2, we first make a finite-volume
approximation and use the supersymmetric representation of random walks to express the
finite-volume two-point function as an inner product (Proposition 2.1). Then we take the
infinite-volume limit and study its asymptotic behavior near the critical νc. We also calculate
the susceptibility and correlation lengths, and prove Theorem 1.3 in Corollary 2.9, Propo-
sition 2.10, and Corollary 2.11. In Section 3, we first prove a general Tauberian theorem,
then we use the theorem, with asymptotics in the parameter ν from Section 2 as input, to
prove Theorem 1.2. The convergence part of Theorem 1.1 follows. In Section 4, we use a
separate stochastic dominance argument to prove θ ′ > 0 everywhere, finishing the proof of
Theorem 1.1.

2. Two-point function, susceptibility, and correlation length. In this section, we first
work on the finite subset [−N,N] ∩ Z with free boundary conditions. We use the transfer
matrix approach to derive an expression for the finite-volume two-point function GN

ij (g, ν).
Then we define a critical parameter νc(g) ∈ R, and we show that for Re(ν) ≥ νc(g), the
infinite-volume limit limN→∞ GN

ij (g, ν) exists and equals Gij (g, ν). We use this representa-
tion of Gij to study one-sided versions of the susceptibility and correlation lengths, obtaining
asymptotics as ν → νc. Two-sided versions of the quantities follow readily by symmetry.

2.1. Finite-volume two-point function. Let N ∈ N. Consider the nearest-neighbor simple
random walk on [−N,N] ∩ Z. That is, the walk jumps to left or right if possible, each with
rate 1. For i, j ∈ [−N,N], let EN

i denote the expectation of such a walk starting at i. The
local times of this walk are defined exactly as in (1.1). Recall p(t) = e−gφ(t)−νt . We define

P N
ij (g, T ) = EN

i

(
e−g

∑N
x=−N φ(LT,x)1X(T )=j

)
,(2.1)

GN
ij (g, ν) =

∫ ∞
0

P N
ij (g, T )e−νT dT =

∫ ∞
0

EN
i

(
N∏

x=−N

p(LT,x)1X(T )=j

)
dT .(2.2)

The modified Bessel functions of the first kind of orders 0 and 1 are the entire functions

I0(z) =
∞∑

m=0

1

m!m!
(

z

2

)2m

, I1(z) =
∞∑

m=0

1

m!(m + 1)!
(

z

2

)2m+1
(2.3)

respectively. For j = 0,1, we define the g, ν-dependent symmetric kernels

kj (t, s) =
√

p(t)
√

p(s)e−t e−sIj (2
√

st),(2.4)
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where
√

p(t) = e− 1
2 gφ(t)− 1

2 νt . Since p(·) has exponential decay by assumption (H3), the ker-
nels are square-integrable. We also define the g, ν-dependent operators T ,Q : L2[0,∞) →
L2[0,∞), by

Tf (t) =
√

p(t)e−t +
∫ ∞

0
f (s)k1(t, s)

√
t

s
ds,(2.5)

Qf (t) =
∫ ∞

0
f (s)k0(t, s) ds.(2.6)

It follows from the definition of k1 and the Taylor series of I1 that

k1(t, s)

√
t

s
=
√

p(t)
√

p(s)e−t e−s
∞∑

m=0

smtm+1

m!(m + 1)! ,(2.7)

which is regular at s = 0 for all t . Notice T is affine but nonlinear. For Q, since k0(t, s)

is square-integrable, Q is a Hilbert–Schmidt operator, thus compact. When ν ∈ R, k0(t, s)

is real and symmetric, so Q is self-adjoint. With these operators, we prove the following
representation of GN

ij . The inner product here is the usual 〈f,h〉 = ∫∞
0 f (t)h(t) dt .

PROPOSITION 2.1. Let g > 0, ν ∈ C, N ∈ N, and −N ≤ i ≤ j ≤ N . Then

GN
ij (g, ν) = 〈

Qj−iT N+i[√p], (T N−j [√p])〉.(2.8)

Note the complex conjugation on T N−j [√p] cancels with the conjugation from the in-
ner product. The proposition is proved using the transfer matrix approach, implemented via
a supersymmetric representation of the random walk. This is the only place we need the
supersymmetric representation. The proof of the proposition and an introduction to the su-
persymmetric theory are included in Appendix A.

REMARK 2.2. Fix x ∈ N. For a continuous-time simple random walk starting at 0 and
stopped when the local time LT,x reaches some fixed value, the local times between 0 and x

form a Markov chain with the transition kernel e−t e−sI0(2
√

st), by the Ray–Knight theorem
[5], Theorem 4.1. The kernel k0(t, s) for our operator Q contains this Markov kernel and has
the extra

√
p(t)

√
p(s) to incorporate self-interactions. Local times outside the interval [0, x]

also form Markov chains, and the Markov kernel there is similarly related to the operator T .

2.2. Critical parameter νc and properties of Q. In this section, we prove properties of
the operator Q and define the critical parameter νc(g) ∈ R.

LEMMA 2.3. For g > 0 and ν ∈ R:

(i) The operator Q defined by (2.6) is positive, that is, 〈Qf,f 〉 ≥ 0 for all f . Hence, all
eigenvalues of Q are nonnegative.

(ii) The operator norm ‖Q‖ is a simple, isolated eigenvalue of Q, and there exists an
eigenvector with eigenvalue ‖Q‖ that is continuous and strictly positive everywhere.
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PROOF. (i) We use the Taylor series I0(z) =∑∞
m=0

1
m!m!(

z
2)2m. For any f , we have

〈Qf,f 〉 =
∫ ∞

0

∫ ∞
0

f (t)f (s)
√

p(t)
√

p(s)e−t e−sI0(2
√

st) ds dt

=
∞∑

m=0

∫ ∞
0

f (t)
√

p(t)e−t t
m

m! dt

∫ ∞
0

f (s)
√

p(s)e−s sm

m! ds

=
∞∑

m=0

|
∫ ∞

0
f (t)

√
p(t)e−t t

m

m! dt |2≥ 0,

(2.9)

because
√

p is real for real ν.
(ii) Since Q is compact and self-adjoint, one of ±‖Q‖ is an eigenvalue [15], Lemma 6.5.

Since eigenvalues must be nonnegative by part (i), ‖Q‖ must be an eigenvalue. It is isolated
by compactness. Also, since any eigenvalue of Q must have magnitude less than the operator
norm, the spectral radius r(Q) equals ‖Q‖.

We use a Krein–Rutman theorem for irreducible operators on Banach lattices [6], The-
orem 1.5, (also see references therein). Krein–Rutman theorems are generalizations of the
Perron–Frobenius theorem for entrywise positive matrices. Since X = L2[0,∞) is a Banach
lattice equipped with the cone P of nonnegative functions, once we verify that Q(P ) ⊂ P and
that Q is ideal-irreducible and compact, by [6], Theorem 1.5, we will learn that r(Q) = ‖Q‖
is a simple eigenvalue, with an eigenvector h that is a quasi-interior point of the cone. By
(ii) in the third paragraph before [6], Theorem 1.5, h is a quasi-interior point of P if and
only if 〈f,h〉 > 0 for all nonzero f ≥ 0, which happens if and only if h is strictly positive
everywhere. Moreover, since

‖Q‖h(t) = (Qh)(t) =
∫ ∞

0
h(s)k0(t, s) ds(2.10)

and k0 is continuous, h is continuous too.
It remains to verify the conditions on Q. Q is compact because it is a Hilbert–Schmidt

operator, and Q(P ) ⊂ P because k0 ≥ 0. To check that Q is ideal-irreducible, we need to
show that any nonzero Q-invariant closed ideal1 I ⊂ X equals X. Let 0 �= u ∈ I . By the
definition of the ideal, we have |u| ∈ I . By Q-invariance, Q(|u|) ∈ I also. Since k0 > 0 and
|u| �= 0, we have Q(|u|) > 0 everywhere, which makes it a quasi-interior point of P . Since
the ideal generated by a quasi-interior point is dense in X by the third paragraph before [6],
Theorem 1.5, we must have I = X, as I is closed. This establishes ideal-irreducibility and
concludes the proof. �

We define νc(g) to be the ν ∈R that satisfies ‖Q(g, ν)‖ = 1. The following lemma guaran-
tees νc(g) exists and is unique. In Proposition 2.10 and the paragraphs after it, we will prove
χ(g, ν) < ∞ for all ν > νc(g) and χ(g, νc(g)) = ∞, so our definition is consistent with the
usual definition of νc(g). We also prove νc(g) ≤ 0 in Proposition 2.10. Limits of νc(g) are
proved in Proposition 2.7.

LEMMA 2.4. Fix g > 0. Consider ν ∈ R.

(i) The map ν �→ ‖Q(g, ν)‖ is continuous and strictly decreasing.
(ii) The map ν �→ ‖Q(g, ν)‖ is convex.

(iii) νc(g) exists and is unique.

1An ideal I ⊂ X is a linear subspace of X with the property that y ∈ I , x ∈ X, and |x| ≤ |y| imply x ∈ I .
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PROOF. (i) Since ν ∈ R, we have k0 > 0, so

(2.11) ‖Q‖ = sup
‖f ‖2=1

∣∣〈Qf,f 〉∣∣= sup
‖f ‖2=1,f ≥0

〈Qf,f 〉.

Consider ν, ν̂ ∈ R. Denote Q̂ = Q(g, ν̂), k̂0(t, s) = k̂0(t, s;g, ν̂), and p̂(t) = p(t;g, ν̂). For
any f ≥ 0, by the Cauchy–Schwarz inequality,

∣∣〈Qf,f 〉 − 〈Q̂f,f 〉∣∣= ∣∣∣∣
∫ ∞

0

∫ ∞
0

f (t)f (s)
[
k0(t, s) − k̂0(t, s)

]
ds dt

∣∣∣∣
≤ ‖f ‖2

2
∥∥k0(t, s) − k̂0(t, s)

∥∥
L2(ds dt).

(2.12)

Recall k0(t, s) = √
p(t)

√
p(s)e−t e−sI0(2

√
st) has exponential decay by assumption (H3).

Also notice p(t) = e−gφ(t)−νt is monotone in ν. Hence, as ν̂ → ν, we have ‖k0(t, s) −
k̂0(t, s)‖L2(ds dt) → 0 by the dominated convergence theorem. Since we are taking the supre-

mum over ‖f ‖2 = 1 to get ‖Q‖, we obtain ‖Q̂‖ → ‖Q‖.
To prove that the map is strictly decreasing, consider ν > ν̂. By Lemma 2.3(ii), Q has an

eigenvector h with eigenvalue ‖Q‖ that is continuous and strictly positive everywhere. We
normalize it so that ‖h‖2 = 1. For each t > 0, we have p(t) = e−gφ(t)−νt < e−gφ(t)−ν̂t =
p̂(t), so k0(t, s) < k̂0(t, s) for all t, s > 0. Since h is positive and continuous, we get

‖Q‖ = 〈Qh,h〉 =
∫ ∞

0

∫ ∞
0

h(t)h(s)k0(t, s) ds dt

<

∫ ∞
0

∫ ∞
0

h(t)h(s)k̂0(t, s) ds dt = 〈Q̂h,h〉 ≤ ‖Q̂‖.
(2.13)

(ii) For each f ≥ 0, a direct calculation gives ∂2

∂ν2 〈Qf,f 〉 ≥ 0, so the map ν �→ 〈Qf,f 〉 is
convex. By taking supremum (2.11), the map ν �→ ‖Q‖ is convex too.

(iii) As ν → ∞, p(t) = e−gφ(t)−νt → 0 for all t > 0. Similar to (2.12), we have 〈Qf,

f 〉 → 0 as ν → ∞, uniformly in ‖f ‖2 = 1. It follows that ‖Q‖ → 0 as ν → ∞. On the other
hand, since ν �→ ‖Q‖ is convex and strictly decreasing, one of its subderivatives must be
strictly negative. Since the corresponding subtangent line bounds the function from below, we
have limν→−∞ ‖Q‖ = ∞. The critical νc(g) then exists by the intermediate value theorem.
Uniqueness follows from part (i). �

LEMMA 2.5. Let g, ν ∈ C with Re(g) > 0.

(i) For a fixed g, the map ν �→ Q(g, ν) into the space of bounded linear operators on
L2[0,∞) is strongly analytic, with derivative given by

(2.14)
(

∂Q

∂ν

)
f (t) =

∫ ∞
0

f (s)

(
−1

2
(t + s)

)
k0(t, s) ds.

(ii) For a fixed ν, the map g �→ Q(g, ν) is strongly analytic, with derivative given by

(2.15)
(

∂Q

∂g

)
f (t) =

∫ ∞
0

f (s)

(
−1

2

(
φ(t) + φ(s)

))
k0(t, s) ds.

PROOF. (i) Fix some g and ν. Let h ∈ C with 0 < |h| ≤ 1. Define the operator

Rh = Q(g, ν + h) − Q(g, ν)

h
.(2.16)

We will show limh→0 Rh = ∂Q
∂ν

in the operator norm, where ∂Q
∂ν

(for now) is defined by the
right-hand side of (2.14). This will show ν �→ Q(g, ν) to be strongly analytic at that point.
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Let f1, f2 ∈ L2[0,∞) be such that ‖f1‖2,‖f2‖2 = 1. Denote p∗(t) = p(t ; Re(g),Re(ν))

and k∗
0(t, s) = k0(t, s; Re(g),Re(ν)). By the Cauchy–Schwarz inequality,∣∣∣∣
〈(

Rh − ∂Q

∂ν

)
f1, f2

〉∣∣∣∣
≤
∫ ∞

0

∫ ∞
0

∣∣f2(t)
∣∣∣∣f1(s)

∣∣∣∣∣∣e
− 1

2 h(t+s) − 1

h
−
(
−1

2
(t + s)

)∣∣∣∣k∗
0(t, s) ds dt

≤ ‖f1‖2‖f2‖2

(∫ ∞
0

∫ ∞
0

(∣∣∣∣e
− 1

2 h(t+s) − 1

h
−
(
−1

2
(t + s)

)∣∣∣∣k∗
0(t, s)

)2
ds dt

)1/2
.

(2.17)

Taking supremum over f1 and f2 gives∥∥∥∥Rh − ∂Q

∂ν

∥∥∥∥= sup
‖f1‖2=‖f2‖2=1

∣∣∣∣
〈(

Rh − ∂Q

∂ν

)
f1, f2

〉∣∣∣∣
≤
(∫ ∞

0

∫ ∞
0

(∣∣∣∣e
− 1

2 h(t+s) − 1

h
−
(
−1

2
(t + s)

)∣∣∣∣k∗
0(t, s)

)2
ds dt

)1/2
.

(2.18)

Since |h| ≤ 1, we have |eah − 1 − ah| ≤∑∞
n=2

|ah|n
n! ≤ |h|2∑∞

n=2
|a|n
n! ≤ |h|2e|a| for all a. We

apply the inequality with a = −1
2(t + s), then

∣∣∣∣e
− 1

2 h(t+s) − 1

h
−
(
−1

2
(t + s)

)∣∣∣∣≤ |h|e 1
2 (t+s).(2.19)

By assumption (H3), e
1
2 (t+s)k∗

0(t, s) still has exponential decay. The claim then follows from
the dominated convergence theorem.

(ii) The same proof with |h| < min{Re(g),1} works. This and assumption (H3) guarantee
enough decay to apply the dominated convergence theorem. �

REMARK 2.6. For g > 0 and ν ∈ R, the eigenvalue ‖Q(g, ν)‖ is simple and isolated
by Lemma 2.3. Since the operators Q(g, ν) are strongly analytic, the Kato–Rellich theorem
[12], Theorem XII.8, implies that there exists a holomorphic function λ(ν;g) that agrees with
‖Q(g, ν)‖ when ν ∈ R. In particular, the derivative ∂ν‖Q(g, ν)‖ exists. Convexity and strict
monotonicity (Lemma 2.4) then imply ∂ν‖Q(g, ν)‖ < 0. Similarly, ∂g‖Q(g, ν)‖ exists too.

By assumptions (H3), there exists t0 ≥ 0 for which φ(t) > 0 for all t > t0. Using this, the
same proof of Lemma 2.4 shows the map g �→ ‖Q(g, ν)‖ for a fixed ν ∈ R to be convex and
strictly decreasing. It follows that ∂g‖Q(g, ν)‖ < 0. Then, by the implicit function theorem,

dνc

dg
= −∂g‖Q(g, ν)‖

∂ν‖Q(g, ν)‖ < 0,(2.20)

showing νc(g) to be strictly decreasing in g.

PROPOSITION 2.7. Assume νc(g) ≤ 0 for all g > 0 (which will be proved in Proposi-
tion 2.10). The critical parameter νc(g) is strictly decreasing in g, with limits

lim
g→0+ νc(g) = 0, lim

g→∞νc(g) = −∞.(2.21)

PROOF. The function νc(g) is strictly decreasing because ν′
c(g) < 0 by (2.20). It follows

that limits of νc(g) exist. Since νc(g) ≤ 0 by hypothesis, we have limg→0+ νc(g) ≤ 0.
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Suppose for the sake of contradiction that limg→0+ νc(g) = ν̃0 < 0. Let ν0 = max{ν̃0,−1}.
Since ‖Q(g, ν)‖ is decreasing in ν by Lemma 2.4(i), for any g > 0 and f �= 0 we have

1 = ∥∥Q(g, νc(g)
)∥∥≥ ∥∥Q(g, ν̃0)

∥∥≥ ∥∥Q(g, ν0)
∥∥≥ ‖Q(g, ν0)f ‖2

‖f ‖2
.(2.22)

We will pick f so that the right-hand side → ∞ as g → 0+. Let a > 0 be a parameter

and let f (t) = e−at . Since
√

p(t;g, ν0) increases to e− 1
2 ν0t as g → 0+, by the monotone

convergence theorem and the Taylor series I0(z) =∑∞
m=0

1
m!m!(

z
2)2m,

lim
g→0+

(
Q(g, ν0)f

)
(t) =

∫ ∞
0

f (s)e− 1
2 ν0t e− 1

2 ν0se−t e−sI0(2
√

st) ds

=
∞∑

m=0

tm

m!e
−( 1

2 ν0+1)t
∫ ∞

0

sm

m!e
−(a+ 1

2 ν0+1)s ds

=
∞∑

m=0

tm

m!e
−( 1

2 ν0+1)t

(
a + 1

2
ν0 + 1

)−m−1

=
(
a + 1

2
ν0 + 1

)−1
exp

{(
a + 1

2
ν0 + 1

)−1
t −

(
1

2
ν0 + 1

)
t

}
.

(2.23)

Observe that if (
a + 1

2
ν0 + 1

)−1
−
(

1

2
ν0 + 1

)
≥ 0,(2.24)

then limg→0+‖Q(g, ν0)f ‖2 = ∞ by monotone convergence. Since ν0 ∈ (−2,0), equation
(2.24) holds as a strict inequality when a = 0. By continuity, (2.24) also holds for all small
a > 0. Picking one such a, then taking the g → 0+ limit of equation (2.22) yields

1 ≥ limg→0+‖Q(g, ν0)f ‖2

‖f ‖2
= ∞,(2.25)

giving a contradiction.
The g → ∞ limit of νc(g) is easier. If νc(g) → ν1 > −∞, since ‖Q(g, ν)‖ is decreasing

in ν, for any g > 0 we have

1 = ∥∥Q(g, νc(g)
)∥∥≤ ∥∥Q(g, ν1)

∥∥.(2.26)

As in the proof of Lemma 2.4(iii) (now with g → ∞ instead if ν → ∞), the right-hand side
converges to 0 as g → ∞, giving a contradiction.

This completes the proof. �

2.3. Infinite-volume two-point function. In this section, we prove GN
ij → Gij and give

an inner product representation of Gij . As a corollary, we obtain asymptotics of Gij as |j −
i| → ∞.

PROPOSITION 2.8. Let g > 0. There exists ε = ε(g) > 0 such that for Re(ν) > νc(g)−ε:

(i) The limit q = limN→∞ T N [√p] exists in L2[0,∞). Moreover, the convergence is
locally uniform in g and ν, and q(t;g, ν) is continuous in t , g and holomorphic in ν;

(ii) For any integers i ≤ j , the two-point function Gij (g, ν) is finite and is given by

Gij (g, ν) = lim
N→∞GN

ij (g, ν) = 〈
Qj−i(q), q̄

〉
.(2.27)
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The proposition is proved via the contraction mapping principle. Recall νc(g) ∈ R makes
the operator norm ‖Q(g, νc(g))‖ = 1. The Qj−i in the representation (2.27) hints at different
behaviors of Gij when ‖Q‖ < 1 and ‖Q‖ > 1 as |j − i| → ∞.

COROLLARY 2.9. Let g > 0, ν ∈R, and ε be given by Proposition 2.8. Then:

(i) If ν > νc(g), Gij (g, ν) decays exponentially as |j − i| → ∞.
(ii) If ν = νc(g), Gij (g, νc(g)) converges to a nontrivial limit as |j − i| → ∞.

(iii) If νc(g) − ε < ν < νc(g), Gij (g, ν) diverges exponentially as |j − i| → ∞.

In particular, we have the critical exponent η = 1 (see (1.9)).

PROOF OF COROLLARY 2.9. When ν ∈ R, by Lemma 2.3, Q is compact, positive, self-
adjoint, and ‖Q‖ is an isolated eigenvalue with a strictly positive eigenvector h. Let P‖Q‖
denote the projection into the eigenspace of ‖Q‖. If P‖Q‖(q) �= 0, then (2.27) and the spectral
theorem implies

Gij (g, ν) ∼ ‖Q‖|j−i|∥∥P‖Q‖(q)
∥∥2

2, |j − i| → ∞,(2.28)

which gives the desired result. Hence, it is sufficient to prove P‖Q‖(q) �= 0.
Recall the definition of the operator T in (2.5). Since Tf (t) ≥ √

p(t)e−t ≥ 0 when f ≥ 0,
a simple induction yields that T N [√p](t) ≥ √

p(t)e−t for all N . It then follows from the L2

convergence in Proposition 2.8(i) that

q(t) ≥
√

p(t)e−t(2.29)

for almost every t , which implies 〈q,h〉 > 0 and P‖Q‖(q) �= 0. This concludes the proof. �

2.3.1. Proof of Proposition 2.8(i). Step 1. We first consider a fixed pair of parameters
g > 0, ν ∈ R, and define the auxiliary linear operator

Af (t) =
∫ ∞

0
f (s)k1(t, s)

√
t

s
ds,(2.30)

so that Tf (t) = √
p(t)e−t + Af (t). We will view A as an operator on a weighted Lr space

and show that it is a contraction when ν ≥ νc(g).
For 1 < r < 2, we define w(t) = t−r/2 and the measure dμ = w(t) dt on (0,∞). Let

r ′ ∈ (2,∞) denote the Hölder conjugate of r . Since
√

p(t) is bounded near t = 0 and has
exponential decay,

√
p(t) belongs to Lr(μ) = Lr

μ for all r < 2. For a function h ∈ Lr ′
μ , by

definition of r ′, we have∫ ∞
0

∣∣h(t)
∣∣r ′

dμ(t) =
∫ ∞

0

∣∣h(t)
∣∣r ′ 1

t (r−1)r ′/2
dt =

∫ ∞
0

(∣∣h(t)
∣∣t (1−r)/2)r ′

dt,(2.31)

so h ∈ Lr ′
μ if and only if h(t)t(1−r)/2 ∈ Lr ′

dt , with ‖h‖
Lr′

μ
= ‖h(t)t(1−r)/2‖

Lr′
dt

. Similarly, for

f ∈ Lr
μ, we have f ∈ Lr

μ if and only if f (t)t−1/2 ∈ Lr
dt , with ‖f ‖Lr

μ
= ‖f (t)t−1/2‖Lr

dt
. We

view A as an operator from Lr
μ → Lr

μ, and define another operator B : Lr
dt → Lr

dt by

Bf (t) =
∫ ∞

0
f (s)k1(t, s) ds.(2.32)
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Both A and B are bounded operators because k1(·, ·) has exponential decay by assump-
tion (H3). For f ∈ Lr

μ and h ∈ Lr ′
μ , observe that

〈Af,h〉μ =
∫ ∞

0
h(t)

∫ ∞
0

f (s)k1(t, s)

√
t

s
ds dμ(t)

=
∫ ∞

0

h(t)
√

t

t r/2

∫ ∞
0

f (s)√
s

k1(t, s) ds dt

= 〈
B
(
f (t)t−1/2), h(t)t(1−r)/2〉

dt ,

(2.33)

so

‖A‖Lr
μ

= sup
{∣∣〈Af,h〉μ

∣∣ : ‖f ‖Lr
μ

= ‖h‖
Lr′

μ
= 1

}
= sup

{∣∣〈Bf̂ , ĥ〉dt

∣∣ : ‖f̂ ‖Lr
dt

= ‖ĥ‖
Lr′

dt
= 1

}= ‖B‖Lr
dt
.

(2.34)

Thus, to prove that A is a contraction, it suffices to prove ‖B‖Lr
dt

< 1 for some 1 < r < 2.
For simplicity, we write ‖B‖r = ‖B‖Lr

dt
.

For r = 2, the methods of Section 2.2 show that B : L2
dt → L2

dt is compact, self-adjoint,
and has a continuous, strictly positive eigenvector h with eigenvalue ‖B‖2, which we nor-
malize to have ‖h‖2 = 1. Since the modified Bessel functions satisfy I1 < I0 pointwise,

‖B‖2 = 〈Bh,h〉 < 〈Qh,h〉 ≤ ‖Q‖.(2.35)

Then by the Riesz–Thorin interpolation theorem, for 1 < r ≤ 2, we have

‖B‖r ≤ ‖B‖1−θ(r)
1 ‖B‖θ(r)

2 < ‖B‖1−θ(r)
1 ‖Q‖θ(r)(2.36)

for some continuous function θ(r) ∈ (0,1] with θ(2) = 1. Since ‖B‖1 < ∞, continuity im-
plies that ‖B‖r < ‖Q‖ when r is sufficiently close to 2. Hence, for ν ≥ νc(g) (which satisfies
‖Q(g, ν)‖ ≤ 1) and r slightly less than 2, we get ‖A‖Lr

μ
= ‖B‖r < 1, showing A to be a

contraction in Lr
μ.

Step 2. We now allow ν to be complex. Let g0 > 0, ν0 ∈ R be such that ‖Q(g0, ν0)‖ ≤ 1.
By Step 1, there exists some r0 ∈ (1,2) for which ‖B(g0, ν0)‖r0 < 1. Since the map (g, ν) �→
‖B(g, ν)‖r0 is continuous, there exists δ = δ(g0, ν0) > 0 such that ‖B(g, ν)‖r0 < 1 for all
|g − g0| ≤ δ, |ν − ν0| ≤ δ. We first show uniform Lr0

μ convergence for (g, ν) in the tube

S0 = {
(g, ν) ∈ (0,∞) ×C : |g − g0| ≤ δ,

∣∣Re(ν) − ν0
∣∣≤ δ

}
,(2.37)

where dμ(t) = t−r0/2 dt , and then we prove L2
dt convergence using Hölder’s inequality. The

ε in the statement of the proposition is given by ε(g0) = δ(g0, νc(g0)).
We extend the definitions of T and A to include dependence on g and ν. Let

X0 =
{
ψ : (0,∞) × S0 → C

∣∣‖ψ‖X0 = sup
(g,ν)∈S0

∥∥ψ(·, g, ν)
∥∥
L

r0
μ

< ∞
}
.(2.38)

We define operator T̂ : X0 → X0 and linear operator Â : X0 → X0 by

(Âψ)(t, g, ν) =
∫ ∞

0
ψ(s, g, ν)k1(t, s;g, ν)

√
t

s
ds,(2.39)

(T̂ ψ)(t, g, ν) =
√

p(t;g, ν)e−t + (Âψ)(t, g, ν).(2.40)

These are indeed well-defined operators into X0, because all (g, ν) ∈ S0 are dominated by the
left real boundary point g∗ = g0 − δ, ν∗ = ν0 − δ, in the sense that∣∣√p(t;g, ν)

∣∣= ∣∣e− 1
2 gφ(t)− 1

2 νt
∣∣≤ e− 1

2 g∗φ(t)− 1
2 ν∗t =

√
p∗(t),(2.41)
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where the last equality defines p∗(t). Writing A∗ = A(g∗, ν∗), we have∣∣(Âψ)(t, g, ν)
∣∣≤ (

A∗∣∣ψ(·, g, ν)
∣∣)(t) ∀t,(2.42)

so ∥∥Âψ(·, g, ν)
∥∥
L

r0
μ

≤ ∥∥A∗∣∣ψ(·, g, ν)
∣∣∥∥

L
r0
μ

≤ ∥∥A∗∥∥
L

r0
μ

∥∥ψ(·, g, ν)
∥∥
L

r0
μ

∀ (g, ν) ∈ S0.(2.43)

Taking supremum yields

sup
(g,ν)∈S0

∥∥Âψ(·, g, ν)
∥∥
L

r0
μ

≤ ∥∥A∗∥∥
L

r0
μ

sup
(g,ν)∈S0

∥∥ψ(·, g, ν)
∥∥
L

r0
μ

,(2.44)

which gives the operator norm ‖Â‖ ≤ ‖A∗‖
L

r0
μ

= ‖B(g∗, ν∗)‖r0 < 1, showing Â to be a
contraction on X0. Since

T̂ ψ1 − T̂ ψ2 = Âψ1 − Âψ2 ∀ψ1,ψ2 ∈X0,(2.45)

T̂ is also a contraction. It follows that q = limN→∞ T̂ N [√p] exists in X0 and is a fixed point
of T̂ .

We next show that the convergence also happens in L2
dt , uniformly in (g, ν) ∈ S0. Let

k∗
1(t, s) = k1(t, s;g∗, ν∗). Since T̂ q = q , by (2.45), (2.41), Hölder’s inequality, and (2.31),∣∣(q − T̂ N+1[√p])(t, g, ν)

∣∣= ∣∣Â(q − T̂ N [√p])(t, g, ν)
∣∣

≤
∫ ∞

0

∣∣(q − T̂ N [√p])(s, g, ν)
∣∣k∗

1(t, s)

√
t

s
sr0/2 dμ(s)

≤ ∥∥(q − T̂ N [√p])(·, g, ν)
∥∥
L

r0
μ

∥∥∥∥k∗
1(t, s)

√
t

s
sr0/2

∥∥∥∥
L

r′0
dμ(s)

= ∥∥(q − T̂ N [√p])(·, g, ν)
∥∥
L

r0
μ

∥∥k∗
1(t, s)

√
t
∥∥
L

r′0
ds

.

(2.46)

Taking supremum over (g, ν) ∈ S0, and then the L2
dt norm, we get∥∥∥sup

g,ν

∣∣(q − T̂ N+1[√p])(t, g, ν)
∣∣∥∥∥

L2
dt

≤ ∥∥q − T̂ N [√p]∥∥X0

∥∥∥∥k∗
1(t, s)

√
t
∥∥
L

r′0
ds

∥∥
L2

dt
.(2.47)

The first term goes to 0 by the convergence in X0, and the second term is finite because k∗
1 has

exponential decay by assumption (H3). This proves that T N [√p] → q in L2
dt . Also, replacing

the L2
dt norm in (2.47) by a supremum over t ≥ 0 shows that T N [√p] → q uniformly in

t ≥ 0 and in (g, ν) ∈ S0. It follows that q(t;g, ν) is continuous and is holomorphic in ν (as
all T N [√p] are holomorphic in ν). This concludes the proof of Proposition 2.8(i). �

2.3.2. Proof of Proposition 2.8(ii). Let i ≤ j . The second equality in the claim (2.27)
follows directly from Proposition 2.1, part (i), and the continuity of Q. To prove the first
equality, we first prove P N

ij (g, T ) → Pij (g, T ). This argument is adapted from [2]. Notice if

a walk never reaches ±N , then it contributes the same to EN
i [·] and Ei[·]. Therefore, a walk

starting at i must make at least min{|N − i|, |−N − i|} steps to make a difference. Using
LT,x ≥ 0 for all x,∣∣P N

ij (g, T ) − Pij (g, T )
∣∣≤ 2Pi(X hits one of ± N by time T )

= 2P
(
MT ≥ min

{|N − i|, |−N − i|}),(2.48)
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where MT is a Poisson process with rate 2. For a fixed T , this probability converges to 0 as
N → ∞.

Since P N
ij ≤ 1 by definition, when ν ∈ R and ν > 0, dominate convergence implies that

Gij (g, ν) = lim
N→∞

∫ ∞
0

P N
ij (g, T )e−νT dT = lim

N→∞GN
ij (g, ν) = 〈

Qj−i(q), q̄
〉
.(2.49)

Note both sides of (2.49) are finite and holomorphic in ν for Re(ν) > νc(g) − ε, as∣∣Gij (g, ν)
∣∣≤ Gij

(
g,Re(ν)

)≤ lim
N→∞GN

ij

(
g,Re(ν)

)= 〈
Qj−i(q), q̄

〉∣∣
g,Re(ν)(2.50)

by Fatou’s lemma. By the uniqueness of analytic continuation, (2.49) must hold for all
Re(ν) > νc(g) − ε, giving the first equality of (2.27). �

2.4. Susceptibility and correlation length. In this section, we prove results about the sus-
ceptibility and correlation lengths.

PROPOSITION 2.10. Let g > 0, νc = νc(g), ν ∈ C with Re(ν) > νc, and q be given by
Proposition 2.8. Then:

(i) The one-sided susceptibility χ+(g, ν) is given by

χ+(g, ν) =
∞∑

j=1

G0j (g, ν) = 〈
Q(1 − Q)−1(q), q̄

〉
,(2.51)

and there is a constant ū = ū(g) > 0 such that

χ+(g, ν) ∼ ū

ν − νc

(
−∂‖Q‖

∂ν

∣∣∣∣
ν=νc(g)

)−1
, ν → ν+

c .(2.52)

(ii) νc(g) ≤ 0.

We have isolated a constant ū in the residue of χ+ in (2.52), because ū shows up in the
calculation of correlation lengths also. By symmetry, the two-sided susceptibility is given by
χ(g, ν) = 2χ+(g, ν) + G00(g, ν). Since G00 is regular as ν → νc by Proposition 2.8(ii), we
obtain Theorem 1.3(ii).

PROOF OF PROPOSITION 2.10. (i) Let Re(ν) > νc, so ‖Q(g, ν)‖ ≤ ‖Q(g,Re(ν))‖ < 1.
Using Proposition 2.8(ii), we have

∣∣χ+(g, ν)
∣∣≤ ∞∑

j=1

∣∣〈Qj(q), q̄
〉∣∣≤ ∞∑

j=1

‖Q‖j‖q‖2
2 < ∞.(2.53)

Since the convergence is locally uniform in ν, χ+ is holomorphic in ν. When such ν is real,
by the monotone convergence theorem and holomorphic functional calculus, we have

χ+(g, ν) =
∞∑

j=1

〈
Qj(q), q̄

〉=
〈 ∞∑
j=1

Qj(q), q̄

〉
= 〈

Q(1 − Q)−1(q), q̄
〉
.(2.54)

It then follows from the uniqueness of analytic continuation that the equality holds for all
Re(ν) > νc.

To determine the divergence of χ+ as ν → ν+
c , we restrict to ν ∈ R so that Q is self-adjoint.

By the spectral theorem, we can decompose q = v + w where v = P‖Q‖(q) is the projection
of q into the eigenspace E‖Q‖, and w ∈ (E‖Q‖)⊥. Since ‖Q‖ is a simple eigenvalue, by the
Kato–Rellich theorem [12], Theorem XII.8, this decomposition is analytic around ν = νc
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(where ‖Q‖ = 1), and there exists δ > 0 such that the spectrum of Q(g, ν) intersects {λ ∈
C||λ− 1| < δ} at exactly one point, for all ν sufficiently close to νc. In particular, this implies
that all other eigenvalues of Q are bounded by 1 − δ as ν → νc. Hence, using that q is
continuous at νc, we have

χ+(g, ν) = 〈
Q(1 − Q)−1(q), q̄

〉
= 〈

Q(1 − Q)−1(v), v̄
〉+ 〈

Q(1 − Q)−1(w), w̄
〉

= ‖Q‖
1 − ‖Q‖

∥∥P‖Q‖(q)
∥∥2

2 + 〈
Q(1 − Q)−1(w), w̄

〉

∼ 1

1 − ‖Q‖
∥∥P1

(
q|νc

)∥∥2
2 + O(1), ν → ν+

c .

(2.55)

Since ∂‖Q‖
∂ν

|ν=νc= limν→νc

‖Q‖−1
ν−νc

, we get

χ+(g, ν) ∼ 1

ν − νc

(
−∂‖Q‖

∂ν

∣∣∣∣
ν=νc

)−1∥∥P1
(
q|νc

)∥∥2
2, ν → ν+

c ,(2.56)

which is the desired result with ū = ‖P1(q|νc )‖2
2.

(ii) Since
∑∞

j=1 P0j ≤ 1, when ν > 0, we have

χ+(g, ν) =
∞∑

j=1

G0j (g, ν) ≤
∫ ∞

0
1 · e−νT dT < ∞(2.57)

by the monotone convergence theorem. But χ+(g, νc(g)) = ∞ by part (i), so we must have
νc(g) ≤ 0. �

The same method applies to correlation lengths of integer orders.

COROLLARY 2.11. Let g > 0, νc = νc(g), ν ∈ C with Re(ν) > νc, and q be given by
Proposition 2.8. Then

∞∑
j=1

jG0j (g, ν) = 〈
Q(1 − Q)−2(q), q̄

〉
,(2.58)

and
∞∑

j=1

jG0j (g, ν) ∼ ū

(ν − νc)2

(
−∂‖Q‖

∂ν

∣∣∣∣
ν=νc(g)

)−2
, ν → ν+

c ,(2.59)

with the same constant ū as in Proposition 2.10.
In general, for any k ∈ N, we have

∞∑
j=1

jkG0j (g, ν) ∼ ū · k!
(ν − νc)k+1

(
−∂‖Q‖

∂ν

∣∣∣∣
ν=νc(g)

)−(k+1)

, ν → ν+
c .(2.60)

Thus, using symmetry, the correlation length of order k (defined in (1.11)) satisfies

ξk(g, ν) ∼ (k!)1/k

ν − νc

(
−∂‖Q‖

∂ν

∣∣∣∣
ν=νc(g)

)−1
, ν → ν+

c ,(2.61)

which gives the critical exponent νk = 1.
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PROOF. For Re(ν) > νc, by the same argument as for Proposition 2.10,

∞∑
j=1

jG0j (g, ν) =
∞∑

j=1

j
〈
Qj(q), q̄

〉=
〈 ∞∑
j=1

jQj (q), q̄

〉
= 〈

Q(1 − Q)−2(q), q̄
〉
.(2.62)

The proof of the asymptotic formula is analogous. For k ≥ 2, we calculate
∑∞

j=1 jkQj by
differentiating the geometric series, then we use the same argument. �

3. Time asymptotics. In this section, we prove asymptotic results as T → ∞. We first
prove a general Tauberian theorem, which utilizes analyticity properties of the Laplace trans-
form on the boundary of the region of convergence. Then we apply the Tauberian theorem to
prove Therorem 1.2.

For a function f : [0,∞) → R, we define its Laplace transform Lf to be the complex-
valued function

Lf (z) =
∫ ∞

0
f (T )e−zT dT .(3.1)

3.1. Tauberian theorem. The following is our Tauberian theorem.

THEOREM 3.1. Let k ∈ N0. Suppose f : [0,∞) → [0,∞) is differentiable and let its
derivative be decomposed as f ′ = α+ − α− with α± ≥ 0. Suppose each of the Laplace trans-
forms Lf (z), Lα±(z) converges for Re(z) > 0 and can be extended to a meromorphic func-
tion on an open set containing the closed half-plane {z ∈ C|Re(z) ≥ 0}. Suppose Lf (z) has
a unique pole of order k + 1 at z = 0, and each of Lα±(z) either has a unique pole of order
≤ k + 1 at z = 0 or is holomorphic. If limz→0 zk+1Lf (z) = C > 0, then

lim
T →∞

f (T )

T k
= C

k! .(3.2)

The main tools to prove our Tauberian theorem are the following two theorems. The first
is from [11], Theorem III.9.2, and the second is from [10], Theorem 4.1.

THEOREM 3.2. Let α(t) = 0 for t < 0, be bounded from below for t ≥ 0 and be such
that the Laplace transform G(z) = Lα(z) exists for Re(z) > 0. Suppose that G(·) can be
analytically continued to an open set containing the closed half-plane {z ∈ C|Re(z) ≥ 0}.
Then the improper integral limT →∞

∫ T
0 α(t) dt exists and equals G(0).

THEOREM 3.3. Let a(t) be integrable over every finite interval (0, T ), and let La(z)

be convergent for z > 0. Suppose La(z) can be extended analytically to a neighborhood of
z = 0. Finally, suppose that

a(t) ≥ −ψ(t) (t > 0),(3.3)

where ψ(t) is continuous for t > 0 and of the form tγ L(t), L(t) slowly oscillating.2 Then∣∣∣∣
∫ T

0
a(t) dt − lim

z→0
La(z)

∣∣∣∣= O
(
ψ(T )

)
, T → ∞.(3.4)

2L : (0,∞) → (0,∞) is said to be slowly oscillating if it is continuous and L(ct)/L(t) → 1 as t → ∞ for
every c > 0.
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Notice Theorem 3.3 does not assume ψ(T ) → 0, so the conclusion is different from that
of Theorem 3.2. Under the hypotheses of Theorem 3.2, we can take the ψ(T ) in Theorem 3.3
to be a constant function, then Theorem 3.3 only gives that

∫ T
0 α − G(0) = O(1), which is

weaker than the conclusion of Theorem 3.2. Nevertheless, the flexibility of Theorem 3.3 is
that we can take ψ(T ) to be, for example, polynomials, and the consequent polynomial upper
bound is sufficient for our purposes.

PROOF OF THEOREM 3.1. The framework of the proof is as follows. We will first use
Theorem 3.3 on a modification of α± to prove f (T ) = O(T k). Then we will use Theorem 3.2
on a different modification of f and α± to show that limT →∞ f (T )

T k exists. Finally, we use the
Hardy–Littlewood Tauberian theorem to identify the limit.

By the assumptions on Lα±, there are Aj ,Bj ∈R such that

Lα+(z) =
k+1∑
j=1

Aj

zj
+ O(1), Lα−(z) =

k+1∑
j=1

Bj

zj
+ O(1)(3.5)

as z → 0. We claim Ak+1 = Bk+1. This is because for z > 0, integration by parts gives3

L[f ′](z) = zL[f ](z) − f (0). By assumption, Lf has a pole of order k + 1 at 0, so Lf ′(z)
has a pole of order k at 0. The relation f ′ = α+ − α− then forces Ak+1 = Bk+1.

We subtract polynomials from α± so that the Laplace transforms of the resultant functions
no longer have poles. Let

α̃+(T ) = α+(T ) −
k+1∑
j=1

Aj

T j−1

(j − 1)! , α̃−(T ) = α−(T ) −
k+1∑
j=1

Bj

T j−1

(j − 1)! .(3.6)

Since L[T j−1/(j − 1)!](z) = z−j , Lα̃±(z) are regular as z → 0. From the assumptions on
Lα±, we get that Lα̃± extend analytically to an open set containing the full closed half-plane
{z ∈ C|Re(z) ≥ 0}.

We focus on α+, the argument for α− is analogous. Since α+(T ) ≥ 0, we have α̃+(T ) ≥
−∑k+1

j=1 Aj
T j−1

(j−1)! . To apply Theorem 3.3, we define

ψ(T ) = T kL(T ) = T k max

{ |Ak|
k! + 1,

1

T k

∣∣∣∣∣
k+1∑
j=1

Aj

T j−1

(j − 1)!
∣∣∣∣∣
}
,(3.7)

so α+(T ) ≥ −ψ(T ). For T large enough, we have L(T ) = |Ak |
k! +1, so L is slowly oscillating.

Therefore, by Theorem 3.3,∣∣∣∣
∫ T

0
α̃+(t) dt + const

∣∣∣∣= O
(
T k), T → ∞.(3.8)

The same equation holds for α̃− in the place of α̃+. We subtract the two equations and use
the definition of α̃±, f ′ = α+ − α−, and Ak+1 = Bk+1, to get

∣∣∣∣
∫ T

0

(
f ′(t) −

k∑
j=1

(Aj − Bj)
tj−1

(j − 1)!
)

dt + const
∣∣∣∣= O

(
T k), T → ∞.(3.9)

Since the polynomial term integrates to O(T k), we get f (T ) = f (0) + ∫ T
0 f ′ = O(T k) as

T → ∞.

3For the boundary term, the existence of the limit limT →∞ f (T )e−zT follows from the existence of the Laplace
transforms Lf (z) and Lf ′(z).



5538 Y. LIU

Next, we will prove that limT →∞ f (T )

T k = limT →∞ f (T )

(T +1)k
exists. By the fundamental the-

orem of calculus,

f (T )

(T + 1)k
= f (0) +

∫ T

0

f ′(t)
(t + 1)k

dt − k

∫ T

0

f (t)

(t + 1)k+1 dt.(3.10)

We first calculate the limit of the second integral using Theorem 3.2. Since Lf has a pole of
order k + 1, there are Cj ∈ R such that

Lf (z) =
k+1∑
j=1

Cj

zj
+ O(1), z → 0,(3.11)

where Ck+1 = C in the hypotheses. Analogous to α̃±, we define

f̃ (T ) = f (T ) −
k+1∑
j=1

Cj

T j−1

(j − 1)! ,(3.12)

then Lf̃ extends analytically to an open set containing the closed half-plane, but f̃ is no
longer bounded from below. To fix this, we apply Theorem 3.2 to f̃ (T )/(T + 1)k+1, which
is bounded from below. For z > 0, the Laplace transform L[f (T )/(T + 1)k+1](z) exists by
domination, and L[f̃ (T )/(T + 1)k+1](z) exists by linearity. By a simple induction on k,

L
[

f̃ (T )

(T + 1)k+1

]
(z) = ez

∫ ∞
z

ds1

∫ ∞
s1

ds2 · · ·
∫ ∞
sk

dsk+1e
−sk+1L[f̃ ](sk+1).(3.13)

This equation also holds for complex z with Re(z) > 0 because Lf̃ is analytic and the open
half-plane is simply connected. Also, since Lf̃ can be extended analytically to the closed
half-plane, (3.13) extends L[f̃ (T )/(T + 1)k+1] analytically to the closed half-plane as well.
Thus, by Theorem 3.2,

lim
T →∞

∫ T

0

f̃ (t)

(t + 1)k+1 dt = lim
z→0

L
[

f̃ (T )

(T + 1)k+1

]
(z).(3.14)

Since f and f̃ differ by a polynomial, we get∫ T

0

f (t)

(t + 1)k+1 dt = Ck+1

k! log(T + 1) + L1 + o(1)(3.15)

for some finite L1.
Next, we calculate the first integral of (3.10). We use the same strategy and apply Theo-

rem 3.2 to α̃±(T )/(T + 1)k . This gives

lim
T →∞

∫ T

0

α̃±(t)

(t + 1)k
dt = lim

z→0
L
[

α̃±(T )

(T + 1)k

]
(z).(3.16)

Since α± and α̃± differ by polynomials, if k ≥ 1, we have∫ T

0

α+(t)

(t + 1)k
dt =

∫ T

0

Ak+1

k!
tk

(t + 1)k
dt + Ak

(k − 1)! log(T + 1) + L2 + o(1),(3.17)

∫ T

0

α−(t)

(t + 1)k
dt =

∫ T

0

Bk+1

k!
tk

(t + 1)k
dt + Bk

(k − 1)! log(T + 1) + L3 + o(1),(3.18)

for some finite L2, L3. We subtract the two equations and use f ′ = α+−α− and Ak+1 = Bk+1
to get ∫ T

0

f ′(t)
(t + 1)k

dt = Ak − Bk

(k − 1)! log(T + 1) + L2 − L3 + o(1).(3.19)
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Combining equations (3.10), (3.15), and (3.19), we obtain

f (T )

(T + 1)k
= Ak − Bk − Ck+1

(k − 1)! log(T + 1) + L4 + o(1)(3.20)

for some finite L4. Now since f (T ) = O(T k), the left-hand side of the equation is bounded.
This implies Ak − Bk − Ck+1 = 0 and limT →∞ f (T )

(T +1)k
= L4.

If k = 0, since Ak+1 = Bk+1, we have f ′ = α+ − α− = α̃+ − α̃−. Denoting
∫∞−

0 g =
limT →∞

∫ T
0 g, equation (3.16) gives∫ ∞−

0
f ′ =

∫ ∞−
0

α̃+ − α̃− = lim
z→0

L[α̃+ − α̃−](z) = lim
z→0

Lf ′(z).(3.21)

As z → 0+, we have Lf ′(z) = zL[f ](z)−f (0) → C −f (0). It then follows from
∫∞−

0 f ′ =
limT →∞ f (T ) − f (0) that limT →∞ f (T ) = C.

It remains to identify L4 for the k ≥ 1 case. Since f ≥ 0, the Hardy–Littlewood Taube-
rian theorem [11], Theorem I.15.1, states that Lf ∼ Cz−(k+1) as z → 0 implies

∫ T
0 f ∼

C
(k+1)!T

k+1 as T → ∞. From this Cesàro sum and existence of limT →∞ f (T )

T k , it is elemen-

tary to identify that limT →∞ f (T )

T k = C
k! . �

3.2. Proof of Theorem 1.2. We prove asymptotics for the numerator and the denominator
of (1.7) separately. The quotient of the limits then yields the theorem. We begin by proving
two lemmas that will be used to verify the hypotheses of Theorem 3.1. The first lemma
calculates derivatives, and it is proved in the same way as the Kolmogorov forward equations.
The only difference is that we get an extra term for staying at site j .

LEMMA 3.4. Recall P0j (g, T ) = E0[e−g
∑

x φ(LT,x)1X(T )=j ]. We have:

(i) For any j ∈ Z,

∂P0j

∂T
= −gE0

[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]+ (P0,j−1 − 2P0j + P0,j+1).(3.22)

(ii)

∂

∂T

∞∑
j=1

P0j (g, T ) = −g

∞∑
j=1

E0
[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]+ (P00 − P01).(3.23)

(iii) For any k ∈ N,

∂

∂T

∞∑
j=1

jkP0j (g, T ) = −g

∞∑
j=1

jkE0
[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]

+ P00 + (
2k − 2

)
P01 + 2

∞∑
j=2

(
k∑

l=2
leven

(
k

l

)
jk−l

)
P0j .

(3.24)

PROOF. (i) Let T ≥ 0 and h > 0. Consider

P0j (g, T + h) = E0
[
e−g

∑
x φ(LT +h,x)1X(T +h)=j

]
.(3.25)

We separate the right-hand side into three events. If the walk makes no jumps between time
T and T + h, then X(T ) = j , and

LT +h,x =
{
LT,j + h x = j,

LT,x x �= j.
(3.26)
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Since the jump rates of the walk are 1 to the left and 1 to the right, the probability for this
event is e−2h = 1 − 2h + o(h).

If the walk makes exactly one jump between time T and T + h, then X(T ) = j ± 1 with
equal probability. For each of the starting points, the probability of jumping to j by time
T + h is 1 − e−h = h + o(h). If the walk makes more than two jumps between time T and
T + h, this happens with O(h2) probability. Combining the three events, we get

P0j (g, T + h) = (1 − 2h)E0
[
e−g[φ(LT,j+h)+∑x �=j φ(LT,x)]1X(T )=j

]
+ hP0,j−1(g, T ) + hP0,j+1(g, T ) + o(h).

(3.27)

Thus,

lim
h→0+

P0j (g, T + h) − P0j (g, T )

h
= E0

[
(−g)φ′(LT,j )e

−g
∑

x φ(LT,x)]1X(T )=j

]
− 2P0j (g, T ) + P0,j−1(g, T ) + P0,j+1(g, T ).

(3.28)

The left limit h → 0− is proved similarly.
(ii) This is from summing (3.22) over j ∈ N.
(iii) This is from summing jk · (3.22). For j ≥ 2, using the binomial theorem, the coeffi-

cient for P0j is

(j − 1)k − 2jk + (j + 1)k =
k∑

l=1

(
k

l

)
jk−l[(−1)l + 1l]= 2

k∑
l=2

l even

(
k

l

)
jk−l,(3.29)

which gives the desired result. �

The next lemma establishes analyticity properties. The proof is algebraic.

LEMMA 3.5. Let g > 0 and νc = νc(g).

(i) For any 0 �= y ∈ R, 1 is not in the spectrum of Q(g, νc + iy).
(ii) The map ν �→ χ+(g, ν) =∑∞

j=1 G0j (g, ν) can be extended to a meromorphic func-
tion on an open set containing the closed half-plane {ν ∈ C|Re(ν) ≥ νc}, and it has a unique
pole at ν = νc.

(iii) For any k ∈ N, the map ν �→ ∑∞
j=1 jkG0j (g, ν) can be extended to a meromorphic

function on an open set containing the closed half-plane {ν ∈ C|Re(ν) ≥ νc}, and it has a
unique pole at ν = νc.

PROOF. (i) Since Q is compact, we only need to prove 1 is not an eigenvalue. Denote
Qc = Q(g, νc) and kc(t, s) = k0(t, s;g, νc) for the kernel of Qc. For y �= 0, define an operator

Uf (t) = f (t)e− 1
2 iyt . Then Q = Q(g, νc + iy) can be decomposed as

Qf (t) =
∫ ∞

0
f (s)e− 1

2 iyt e− 1
2 iyskc(t, s) ds = UQcUf (t).(3.30)

Suppose Qf = (UQcU)f = 1f , then by definition of U , we have e− 1
2 iytQcUf (t) =

f (t), so

〈QcUf,Uf 〉 =
∫ ∞

0
e

1
2 iytf (t)e− 1

2 iytf (t) dt =
∫ ∞

0
eiyt

∣∣f (t)
∣∣2.(3.31)

Since Qc is a positive operator, we have

〈QcUf,QcUf 〉 ≤ ‖Qc‖〈QcUf,Uf 〉 = 1 ·
∫ ∞

0
eiyt

∣∣f (t)
∣∣2 dt.(3.32)
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But 〈QcUf,QcUf 〉 = ∫∞
0 e

1
2 iytf (t)e

1
2 iytf (t) dt = ∫∞

0 |f (t)|2 dt , so plugging in and taking
the real part give

0 ≤
∫ ∞

0

(
cos(yt) − 1

)∣∣f (t)
∣∣2 dt.(3.33)

For y �= 0, cos(yt) − 1 < 0 for almost every t . This forces f = 0 almost surely, so 1 cannot
be an eigenvalue of Q.

(ii) By Proposition 2.10(i), for Re(ν) > νc,

χ+(g, ν) = 〈
Q(1 − Q)−1(q), q̄

〉
.(3.34)

By Proposition 2.8(i), q is holomorphic in ν for Re(ν) > νc − ε. Since the conjugation q̄ and
the conjugation of the second argument of the inner product cancel each other, it suffices to
prove that (1 − Q)−1 is well-defined on an open set containing the closed half-plane, except
at ν = νc.

By part (i), (1 −Q)−1 is well-defined at ν = νc + iy with y �= 0. By continuity, (1 −Q)−1

is well-defined on a small neighborhood around all such ν = νc + iy, y �= 0. At ν = νc, we
know 1 is the largest eigenvalue of Q(g, νc) and it is simple by Lemma 2.3(ii). Hence, the
Kato–Rellich theorem identifies the top of the spectrum λ(ν;g) of Q(g, ν) near ν = νc (also
see Remark 2.6). Since for ν ∈ R we have λ(ν;g) = ‖Q(g, ν)‖, the function λ(ν;g) must be
nonconstant. Thus, there exists a punctured neighborhood of ν = νc in which λ(ν;g) �= 1. In
this punctured neighborhood, (1−Q)−1 is well-defined. Together, this proves that (1−Q)−1

is well-defined on an open set containing the closed half-plane, except at ν = νc. The right-
hand side of (3.34) then gives the desired extension.

(iii) For k = 1, this follows from the same reasoning and equation (2.58), which states that

∞∑
j=1

jG0j (g, ν) = 〈
Q(1 − Q)−2(q), q̄

〉
,

(
Re(ν) > νc

)
.

Similarly, for k > 1, we use

∞∑
j=1

jkG0j (g, ν) =
〈( ∞∑

j=1

jkQj

)
(q), q̄

〉
,

(
Re(ν) > νc

)
.(3.35)

Note that
∑∞

j=1 jkQj belongs to the Z-algebra generated by Q and (1 − Q)−1 by holomor-
phic functional calculus, because

∑∞
j=1 jkzj belongs to the Z-algebra generated by z and

(1 − z)−1 (by differentiating (1 − z)−1 =∑∞
j=0 zj ). �

PROOF OF THEOREM 1.2. We will see that θ(g) = (− ∂‖Q‖
∂ν

|ν=νc(g))
−1. First, we handle

the denominator of (1.7). Fix g > 0. Define

f (T ) =
∞∑

j=1

P0j (g, T )e−νcT ≥ 0.(3.36)

We differentiate f using the product rule and Lemma 3.4(ii). Let

α+(T ) = −νc

∞∑
j=1

P0j (g, T )e−νcT + P00(g, T )e−νcT ,(3.37)

α−(T ) = g

∞∑
j=1

E0
[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]
e−νcT + P01(g, T )e−νcT ,(3.38)
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then f ′ = α+ − α− and α± ≥ 0, because νc ≤ 0 by Proposition 2.10(ii) and φ′ ≥ 0 by as-
sumption (H2).

Notice Lf (z) = χ+(g, νc + z), so Lf (z) converges for Re(z) > 0 by Proposition 2.10
and extends to a meromorphic function on an open set containing the closed half-plane by
Lemma 3.5. For Lα+(z) = −νcχ+(g, νc + z) + G00(g, νc + z), the same is true because
G00(g, νc + z) is holomorphic in z for Re(z) > −ε by Proposition 2.8. For Lα−, using the
method of Section 2 and assumption (H4), it is easy to prove that

LE0
[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]= 〈
Qj [q](t), φ′(t)q(t)

〉
.(3.39)

The required properties then follow analogously. We also know Lf has a unique simple
pole at z = 0, and each of Lα± either has a unique simple pole at z = 0 or is holomorphic.
Therefore, by Theorem 3.1 with k = 0 and the ν → ν+

c asymptotics in (2.52), we conclude

∞∑
j=1

P0j (g, T )e−νcT → ū

(
−∂‖Q‖

∂ν
|ν=νc(g)

)−1
, T → ∞.(3.40)

For the numerator of (1.7), we use

f (T ) =
∞∑

j=1

jkP0j (g, T )e−νcT ,(3.41)

α+(T ) = −νc

∞∑
j=1

jkP0j (g, T )e−νcT

(3.42)

+
[
P00 + (

2k − 2
)
P01 + 2

∞∑
j=2

(
k∑

l=2
l even

(
k

l

)
jk−l

)
P0j

]
e−νcT ,

α−(T ) = g

∞∑
j=1

jkE0
[
φ′(LT,j )e

−g
∑

x φ(LT,x)1X(T )=j

]
e−νcT .(3.43)

This Lf has a pole of order k + 1 by Corollary 2.11. It follows from Theorem 3.1 and the
ν → ν+

c asymptotics in (2.60) that

∞∑
j=1

jkP0j (g, T )e−νcT ∼ ū

(
−∂‖Q‖

∂ν
|ν=νc(g)

)−(k+1)

T k, T → ∞.(3.44)

Dividing by the denominator (3.40), we get∑∞
j=1 jkP0j (g, T )∑∞
j=1 P0j (g, T )

∼
(
−∂‖Q‖

∂ν
|ν=νc(g)

)−k

T k, T → ∞,

which is the desired result with θ(g) = (− ∂‖Q‖
∂ν

|ν=νc(g))
−1. �

4. Monotonicity of speed. In this section, we prove that the escape speed θ(g) =
(− ∂‖Q‖

∂ν
|ν=νc(g))

−1 has a strictly positive derivative θ ′(g) > 0. In Section 4.1, we first build a
sequence {cn}∞n=0 for every g, and we prove that θ ′(g) > 0 is equivalent to c0 + 2

∑∞
n=1 cn >

0. Here, cn is related to the nth power of the operator Q evaluated at (g, νc(g)) (see (4.5)). In
Section 4.2, we use stochastic dominance to prove c0 > 0 and cn ≥ 0 for all n, which imply
θ ′(g) > 0 and complete the proof of Theorem 1.1.

Since we only encounter the operator Q in this section, for simplicity, we write k(t, s) =
k0(t, s) for the kernel of Q (see (2.6)). Also, we assume ν ∈ R throughout the section.
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4.1. Reduction. We begin by calculating θ ′(g) using the implicit function theorem. Us-
ing subscripts for partial derivatives and denoting λ = ‖Q‖, we have

d

dg

(
1

θ(g)

)
= −λνg − λνν

dνc

dg

= −λνg − λνν(−λg/λν)

= (λνgλν − λννλg)/(−λν).

(4.1)

Since λν < 0 by Lemma 2.4, we have θ ′ > 0 if and only if λνgλν − λννλg < 0. This com-
bination of derivatives is central to the reduction so we give it a name. For a C2 function
F = F(g, ν), we define

L[F ] = FνgFν − FννFg.(4.2)

The goal is to prove L[λ] < 0. However, it is difficult to calculate L[λ] directly because of the
second derivatives. Instead, as suggested in [8], we can calculate L[〈Qn(g, ν)f,f 〉1/n] for
some f > 0 and then send n → ∞. The idea is to utilize ‖Q(g, ν)‖ = limn→∞〈Qn(g, ν)f,

f 〉1/n. This is justified by the following lemma, with f chosen to be a leading eigenvector
of Q.

LEMMA 4.1. Fix g0 > 0 and ν0 = νc(g0). Let h0 be the positive normalized leading
eigenvector of Q(g0, ν0), that is, h0 satisfies Q(g0, ν0)h0 = h0, h0 > 0, and ‖h0‖2 = 1. For
any n ≥ 1, define

Hn(g, ν) = 〈
Qn(g, ν)h0, h0

〉1/n
.(4.3)

Then for ∗ = g, ν, we have ∂∗Hn(g0, ν0) = λ∗ and ∂∗∂νHn(g0, ν0) → λν∗ as n → ∞. Hence,

lim
n→∞L[Hn]

∣∣
g0,ν0

= L[λ]∣∣g0,ν0
.(4.4)

This lemma is proved by calculating L[Hn] using differentiation rules and calculating L[λ]
using Cauchy’s integral formula. The proof is given in Appendix B. The function Hn(g, ν) is
more tractable than the operator norm λ(g, ν) = ‖Q(g, ν)‖.

LEMMA 4.2. Assume the hypotheses of Lemma 4.1. For any n ≥ 0, define

cn = 〈
Qn[th0(t)

]
(s), φ(s)h0(s)

〉 · ∫ ∞
0

sh2
0(s) ds

− 〈
Qn[th0(t)

]
(s), sh0(s)

〉 · ∫ ∞
0

φ(s)h2
0(s) ds,

(4.5)

with Q evaluated at (g0, ν0). Then for all n ≥ 1,

L[Hn]
∣∣
g0,ν0

= −1

n

(
−1

2
c0 + 1

2
cn +

n∑
i=1

n∑
j=1

c|j−i|
)
.(4.6)

Combining the two lemmas, we sum diagonally (the convergence of the series is controlled
by the second largest eigenvalue, which is < 1) to obtain

L[λ]∣∣g0,ν0
= lim

n→∞L[Hn]
∣∣
g0,ν0

= −c0 − 2
∞∑

n=1

cn.(4.7)

In the next subsection, we will prove c0 > 0 and cn ≥ 0 for all n. This will allow us to
conclude L[λ]|g0,ν0< 0, which is equivalent to θ ′(g0) > 0.

The proof of Lemma 4.2 uses the following lemma due to [8].
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LEMMA 4.3. Let F = F(g, ν) be C2 and φ : R→ R be differentiable on the image of F .
Then

L
[
φ(F )

]= (
φ′(F )

)2
L[F ].(4.8)

PROOF. This is a direct calculation using differentiation rules. We have

L
[
φ(F )

]= (
φ(F )

)
νg

(
φ(F )

)
ν − (

φ(F )
)
νν

(
φ(F )

)
g

= (
φ′(F )Fν

)
g

(
φ′(F )Fν

)− (
φ′(F )Fν

)
ν

(
φ′(F )Fg

)
= (

φ′′(F )FgFν + φ′(F )Fνg

)(
φ′(F )Fν

)− (
φ′′(F )FνFν + φ′(F )Fνν

)(
φ′(F )Fg

)
= (

φ′(F )
)2

(FνgFν − FννFg)

= (
φ′(F )

)2
L[F ],

which is the desired result. �

PROOF OF LEMMA 4.2. We use Lemma 4.3 with φ(t) = t1/n and F(g, ν) = 〈Qn(g,

ν)h0, h0〉. By the hypotheses, we have 〈Qn(g0, ν0)h0, h0〉 = 〈h0, h0〉 = 1, hence,

L[Hn]
∣∣
g0,ν0

=
(

1

n
(1)

)2
L
[〈
Qn(g, ν)h0, h0

〉]∣∣
g0,ν0

.(4.9)

We calculate the right-hand side next. Since h0 is fixed, we only need to differentiate Q.
Recall Q was defined in (2.6) by

Qf (t) =
∫ ∞

0
f (s)k(t, s) ds,

k(t, s) =
√

p(t)
√

p(s)e−t e−sI0(2
√

st),√
p(t) = e− 1

2 gφ(t)− 1
2 νt .

Observe g and ν enter the kernel only through
√

p. Writing out all n integrals in Qnh0 yields
〈
Qnh0, h0

〉= ∫
(0,∞)n+1

h0(sn)k(sn, sn−1) · · ·k(s1, s0) · h0(s0) ds,(4.10)

where ds = ds0 · · ·dsn. Thus, the g-derivative is

∂

∂g

〈
Qnh0, h0

〉= −
∫
(0,∞)n+1

(
1

2
φ(sn) +

n−1∑
j=1

φ(sj ) + 1

2
φ(s0)

)

· h0(sn)k(sn, sn−1) · · ·k(s1, s0) · h0(s0) ds.

(4.11)

When evaluated at (g0, ν0), we have Q(g0, ν0)h0 = h0, so for each j ,∫
(0,∞)n+1

φ(sj )h0(sn)k(sn, sn−1) · · ·k(s1, s0) · h0(s0) ds =
∫ ∞

0
φ(sj )h

2
0(sj ) dsj .(4.12)

This gives

∂

∂g

〈
Qnh0, h0

〉∣∣
g0,ν0

= −n

∫ ∞
0

φ(s)h2
0(s) ds.(4.13)

The ν-derivative is similar and gives a multiplier of −(1
2sn +∑n−1

j=1 sj + 1
2s0) to the inte-

grand of (4.10). We get

∂

∂ν

〈
Qnh0, h0

〉∣∣
g0,ν0

= −n

∫ ∞
0

sh2
0(s) ds.(4.14)
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For the second derivatives, we define

αj = αj (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
j = 0,

1 0 < j < n,
1

2
j = n,

(4.15)

then

∂2

∂ν∂g

〈
Qnh0, h0

〉

=
n∑

i=0

n∑
j=0

αiαj

∫
(0,∞)n+1

φ(si)sjh0(sn)k(sn, sn−1) · · ·k(s1, s0) · h0(s0) ds.

(4.16)

When evaluating at (g0, ν0), we have Q(g0, ν0)h0 = h0, so∫
(0,∞)n+1

φ(si)sjh0(sn)k(sn, sn−1) · · ·k(s1, s0) · h0(s0) ds

= 〈
Q|j−i|[sjh0(sj )

]
(si), φ(si)h0(si)

〉
.

(4.17)

Thus,

∂2

∂ν∂g

〈
Qnh0, h0

〉∣∣
g0,ν0

=
n∑

i=0

n∑
j=0

αiαj

〈
Q|j−i|[sjh0(sj )

]
(si), φ(si)h0(si)

〉
.(4.18)

Similarly,

∂2

∂ν2

〈
Qnh0, h0

〉∣∣
g0,ν0

=
n∑

i=0

n∑
j=0

αiαj

〈
Q|j−i|[sjh0(sj )

]
(si), sih0(si)

〉
.(4.19)

Using the definition of cn in (4.5) and the definition of L in (4.2), combining the sums
above gives

L
[〈
Qn(g, ν)h0, h0

〉]∣∣
g0,ν0

=
n∑

i=0

n∑
j=0

αiαj (−n)c|j−i|

= (−n)

(
−1

2
c0 + 1

2
cn +

n∑
i=1

n∑
j=1

c|j−i|
)
.

(4.20)

This and equation (4.9) give the claim. �

4.2. Stochastic dominance. In this section, we prove c0 > 0 and cn ≥ 0, which then imply
θ ′(g0) > 0 by Section 4.1. In the following proposition, we rewrite the inequality cn ≥ 0 in a
quotient form (recall the definition of cn in (4.5)). This allows the inequality to be interpreted
as an inequality between the expectations of two random variables.

PROPOSITION 4.4. Fix g0 > 0 and ν0 = νc(g0). Let Q = Q(g0, ν0). Let h0 be the positive
normalized leading eigenvector of Q, that is, h0 satisfies Qh0 = h0, h0 > 0, and ‖h0‖2 = 1.
Then for any n ≥ 0, we have

(4.21)
〈Qn[th0(t)](s), φ(s)h0(s)〉∫∞

0 φ(s)h2
0(s) ds

≥ 〈Qn[th0(t)](s), sh0(s)〉∫∞
0 sh2

0(s) ds
,

and the inequality is strict for n = 0.
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To illustrate the method of the proof, we will first prove the case n = 0 using (first-order)
stochastic dominance. For real-valued random variables X, Y , we write X � Y if P(X >

x) ≤ P(Y > x) for all x ∈ R. If X, Y have density functions fX , fY respectively, a sufficient
condition for X � Y is that fY /fX is an increasing function. A consequence of X � Y is that
EX ≤ EY .

PROOF FOR THE CASE n = 0. If n = 0, the goal (4.21) reduces to∫∞
0 sφ(s)h2

0(s) ds∫∞
0 φ(s)h2

0(s) ds
>

∫∞
0 s · sh2

0(s) ds∫∞
0 sh2

0(s) ds
.

This can be written as EY > EX, where Y , X are random variables on (0,∞) defined by the
density functions

fY (s) = φ(s)h2
0(s)∫∞

0 φ(s)h2
0(s) ds

, fX(s) = sh2
0(s)∫∞

0 sh2
0(s) ds

.(4.22)

Notice fY (s)/fX(s) = cφ(s)/s for some positive constant c, so it is increasing by assump-
tion (H2). Thus, X � Y and EX ≤ EY . The strict inequality follows from X and Y having
different distributions, which is a consequence of h0(s) > 0 for all s ≥ 0. �

To prove the general case, we need a result on multivariate stochastic order. For random
vectors X,Y ∈ R

n+1, we say X � Y if P(X ∈ U) ≤ P(Y ∈ U) for any increasing set U ⊂
R

n+1.

LEMMA 4.5 ([14], Theorem 6.B.3). Let X = (X0, . . . ,Xn) and Y = (Y0, . . . , Yn) be
R

n+1-valued random variables. If X0 � Y0 and the conditional distributions satisfy

(4.23) [Xi |X0 = x0, . . . ,Xi−1 = xi−1] � [Yi |Y0 = y0, . . . , Yi−1 = yi−1]
whenever (x0, . . . , xi−1) ≤ (y0, . . . , yi−1) for all i = 1, . . . , n, then X � Y . As a result, Xn �
Yn and EXn ≤ EYn.

PROOF OF PROPOSITION 4.4 FOR THE CASE n > 0. Recall Q was defined by Qf (t) =∫∞
0 f (s)k0(t, s) ds and we write k(t, s) = k0(t, s). With sn replacing t and s0 replacing s, the

numerator of the left-hand side of the goal (4.21) is〈
Qn[t · h0(t)

]
(s), φ(s)h0(s)

〉
=
∫
(0,∞)n+1

sn · h0(sn)k(sn, sn−1) · · ·k(s1, s0) · φ(s0)h0(s0) ds.
(4.24)

We define a random variable Y = (Y0, . . . , Yn) ∈ R
n+1+ by the density function

fY (s0, . . . , sn) = 1

ZY

h0(sn)k(sn, sn−1) · · ·k(s1, s0) · φ(s0)h0(s0).(4.25)

Since the normalizing constant ZY is given by

ZY =
∫
(0,∞)n+1

h0(sn)k(sn, sn−1) · · ·k(s1, s0) · φ(s0)h0(s0)

= 〈
Qnh0, φh0

〉= 〈h0, φh0〉 =
∫ ∞

0
φ(s0)h

2
0(s0) ds0,

(4.26)
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the left-hand side of (4.21) is exactly EYn. Similarly, we define a random variable X =
(X0, . . . ,Xn) ∈ R

n+1+ by the density function

fX(s0, . . . , sn) = 1

ZX

h0(sn)k(sn, sn−1) · · ·k(s1, s0) · s0h0(s0),(4.27)

then the right-hand side of (4.21) is exactly EXn. We use Lemma 4.5 to prove EYn ≥ EXn.
To see that X0 � Y0, notice the density functions for X0 and Y0 are

fX0(s0) = 1

ZX

s0h
2
0(s0), fY0(s0) = 1

ZY

φ(s0)h
2
0(s0)(4.28)

because Qh0 = h0. The dominance is proved in the n = 0 case. To show the dominance of
conditional distributions (4.23), we use conditional density functions. The conditional density
of Xi given X0 = x0, . . . ,Xi−1 = xi−1 is

fi(si |x0, . . . , xi−1) = 1

Z1
h0(si)k(si, xi−1) · · ·k(x1, x0) · x0h0(x0),(4.29)

and the conditional density function of Yi given Y0 = y0, . . . , Yi−1 = yi−1 is

gi(si |y0, . . . , yi−1) = 1

Z2
h0(si)k(si, yi−1) · · ·k(y1, y0) · φ(y0)h0(y0).(4.30)

By definition of k(·, ·) = k0(·, ·) in (2.4), we have

gi(si |y0, . . . , yi−1)

fi(si |x0, . . . , xi−1)
= C1

k(si, yi−1)

k(si, xi−1)

= C1

√
p(yi−1)

√
p(si)e

−yi−1e−si I0(2
√

siyi−1)√
p(xi−1)

√
p(si)e−xi−1e−si I0(2

√
sixi−1)

= C2
I0(2

√
siyi−1)

I0(2
√

sixi−1)
,

(4.31)

where C1,C2 > 0 are constants not depending on si . To prove the required stochastic domi-
nance, we show that this ratio is increasing in si . To simplify the notation, we prove

F(t) = I0(λ2t)

I0(λ1t)
(4.32)

to be increasing in t ≥ 0 if 0 ≤ λ1 ≤ λ2, then we can apply this with t = √
si , λ1 = 2

√
xi−1,

and λ2 = 2
√

yi−1. Notice

(
logF(t)

)′ = λ2
I ′

0(λ2t)

I0(λ2t)
− λ1

I ′
0(λ1t)

I0(λ1t)
.(4.33)

Since λ2 ≥ λ1 ≥ 0, I ′
0 = I1, and since I1/I0 is nonnegative and increasing,4 we get

(logF(t))′ ≥ 0 for t ≥ 0. Since F > 0, we get F ′ ≥ 0 as well. This verifies all hypotheses of
Lemma 4.5 and finishes the proof. �

APPENDIX A: SUPERSYMMETRIC REPRESENTATION OF RANDOM WALK

What we call the supersymmetric representation of random walk is an integral represen-
tation for certain functionals of local times of a continuous-time random walk. It is also
known as the supersymmetric version of the BFS–Dynkin isomorphism theorem [3], Corol-
lary 11.3.7. The integral involved is an integration of differential forms. Further background
of the isomorphism theorem can be found in [3], Chapter 11.

4The monotonicity of the ratio I1/I0 was proved in, for example, [13], Theorem 1, 1(b).
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A.1. Differential forms, bosons, and fermions.

A.1.1. Integration of differential forms. Let � = {1, . . . , |�|} be a finite set, which will
be the state space of the random walk. We consider 2-component real fields over �. For each
x ∈ �, let (ux, vx) be real coordinates. The 1-forms {dux, dvx}x∈� generate the Grassmann
algebra of differential forms on R

2�, with multiplication given by the anti-commuting wedge
product.

We write u = (ux)x∈�, v = (vx)x∈�. For p ∈ N0, a p-form is a function of (u, v) multi-
plied with a product of p differentials. A form K is a sum of p-forms with possibly different
values of p. The largest such p is called the degree of K . For a fixed p, the contribution
of p-forms to K is called the degree-p part of K . A form is called even if it is the sum of
p-forms with even p only. Due to anti-commutativity, we can always write the degree-2|�|
part of a form K as

f (u, v) du1 ∧ dv1 ∧ · · · ∧ du|�| ∧ dv|�|.(A.1)

The integral of K is then defined to be the Lebesgue integral∫
R2|�|

K =
∫
R2|�|

f (u, v) du1 dv1 · · ·du|�| dv|�|.(A.2)

Notice if the degree of K is strictly less than 2|�|, then its degree-2|�| part is zero, so its
integral is zero.

A.1.2. Bosons and fermions. It is convenient to use complex coordinates. For x ∈ �, we
define

φx = ux + ivx, φ̄x = ux − ivx,

dφx = dux + i dvx, dφ̄x = dux − i dvx.
(A.3)

We call (φ, φ̄) = (φx, φ̄x)x∈� the boson field. We also define

ψx = 1√
2π

e−iπ/4 dφx, ψ̄x = 1√
2π

e−iπ/4 dφ̄x,(A.4)

and call (ψ, ψ̄) = (ψx, ψ̄x)x∈� the fermion field. Then

ψ̄x ∧ ψx = 1

2πi
dφ̄x ∧ dφx = 1

π
dux ∧ dvx.(A.5)

The combination � = (φx, φ̄x,ψ, ψ̄x)x∈� is called a superfield. From now on, we drop the
wedge symbol in the wedge product. One important field of forms is

�2 = (
�2

x

)
x∈� = (φxφ̄x + ψxψ̄x)x∈�.(A.6)

For a complex |�| × |�| matrix �, we define

(�,−��) = ∑
x∈�

(
φx(−�φ̄)x + ψx(−�ψ̄)x

)
.(A.7)

A.1.3. Function of forms. For p ∈ N, consider a C∞ function F : Rp → R. Let K =
(K1, . . . ,Kp) be a collection of even forms. Assume the degree-0 part K0

j of each Kj is real.

Then we define the form F(K) using the Taylor series about the degree-0 part K0, as

F(K) =∑
α

1

α!F
(α)(K0)(K − K0)α,(A.8)
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where the sum is over all multi-indexes α = (α1, . . . , αp), and α! =∏p
j=1 αj !, (K − K0)α =∏p

j=1(Kj − K0
j )αj (the order of the product does not matter because all Kj are even). The

sum is always finite because (Kj − K0
j )αj = 0 for all αj > 2|�| by anti-commutativity. The

key example is the following. With p = 1 and x ∈ �,

F
(
�2

x

)= F(φxφ̄x + ψxψ̄x) = F(φxφ̄x) + F ′(φxφ̄x)ψxψ̄x.(A.9)

A.2. Isomorphism theorem and supersymmetry. Let {X(t)}t≥0 be a continuous-time
random walk on a finite set � with generator �. We denote its expectation by Ei if X(0) = i.
The local time of X at x ∈ � up to time T is defined by

(A.10) LT,x =
∫ T

0
1X(s)=x ds.

We write LT = (LT,x)x∈�. The supersymmetric BFS–Dynkin isomorphism theorem [3],
Corollary 11.3.7, relates local times of X(t) with boson and fermion fields, as follows.

THEOREM A.1 (BFS–Dynkin isomorphism theorem). Let F : R|�| → R be such that
eε
∑

x∈� txF (t) is a Schwartz function for some ε > 0. Then∫ ∞
0

Ei

(
F(LT )1X(T )=j

)
dT =

∫
R2|�|

φ̄iφj e
−(�,−��)F

(
�2),(A.11)

where {X(t)}t≥0 is a continuous-time random walk on � with generator �.

We will use this theorem on the finite-volume two-point function GN
ij defined in (2.2).

Choosing the nearest-neighbor Laplacian � on the right-hand side allows us to use the trans-
fer matrix approach.

There is a symmetry between bosons and fermions called supersymmetry. The next the-
orem is a demonstration of this. Notice the form �2

x = φxφ̄x + ψxψ̄x is unchanged if we
interchange (φx, φ̄x) with (ψx, ψ̄x), so the integrands of the two sides of (A.12) are related
by an interchange of bosons and fermions. For general results and discussions on supersym-
metry, we refer to [3], Section 11.4.

THEOREM A.2. Let x ∈ � and F : [0,∞) → R be smooth. If limt→∞ tF (t) = 0 and the
integrals exist, then ∫

R2
φ̄xφxF

(
�2

x

)=
∫
R2

ψ̄xψxF
(
�2

x

)
.(A.12)

PROOF. Since bosons commute and fermions anti-commute,

φ̄xφx − ψ̄xψx = φxφ̄x + ψxψ̄x = �2
x,(A.13)

so it is sufficient to prove
∫
R2 �2

xF (�2
x) = 0. By definition of the integral and by (A.9),∫

R2
�2

xF
(
�2

x

)=
∫
R2

(φxφ̄x + ψxψ̄x)
(
F(φxφ̄x) + F ′(φxφ̄x)ψxψ̄x

)

=
∫
R2

[
F(φxφ̄x) + φxφ̄xF

′(φxφ̄x)
]
ψxψ̄x

=
∫
R2

[
F
(
u2 + v2)+ (

u2 + v2)F ′(u2 + v2)]−1

π
dudv

= −
∫ ∞

0

[
F
(
r2)+ r2F ′(r2)]dr2

= −
∫ ∞

0

d

dt

(
tF (t)

)
dt = 0,

(A.14)

which is the desired result. �
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A.3. Proof of Proposition 2.1. We first prove Proposition 2.1 for ν ∈ R using the su-
persymmetric representation. We need the following lemma, which is a corollary of Proposi-
tion 2.5 and Lemma 2.6 in [4]. Since we need to deal with two superfields at the same time, we
use the notation D� to signify that the integration is with respect to the superfield �. We also

recall the operators T and Q defined in (2.5) and (2.6). Notice f (t) = √
p(t) = e− 1

2 gφ(t)− 1
2 νt

satisfies the hypotheses of the lemma, because φ(t) ≥ 0 and φ(0) = 0 by assumption (H0).

LEMMA A.3. Let ν ∈ R. Fix a superfield Z = (ζ, ζ̄ , ξ, ξ̄ ), where ξ = 1√
2π

e−iπ/4 dζ

and ξ̄ = 1√
2π

e−iπ/4 dζ̄ . Let f : [0,∞) → [0,∞) be a smooth function such that
√

p · f

is bounded. Then:

(i) If f (0) = 1, then Tf (0) = 1, and the following holds if the integrals exist

(A.15)
√

p
(
Z2
) ∫

R2
D�e−(Z−�)2

√
p
(
�2
)
f
(
�2)= Tf

(
Z2).

(ii) If f > 0 pointwise, then Qf > 0 pointwise, and the following holds if the integrals
exist

(A.16)
√

p
(
Z2
) ∫

R2
D�φ̄e−(Z−�)2

√
p
(
�2
)
f
(
�2)= ζ̄Qf

(
Z2).

PROOF. (i) By definition of T in (2.5) and by the Taylor expansion of the kernel (2.7),

Tf (0) =
√

p(0) · 1 +
∫ ∞

0
f (s) · 0ds = 1.(A.17)

By [4], Proposition 2.5, ∫
R2

D�e−(Z−�)2
√

p
(
�2
)
f
(
�2)= e−V (Z2),(A.18)

where

e−V (t) = e−t (√p(0)f (0) + v(t)
)
,(A.19)

v(t) =
∫ ∞

0

√
p(s)f (s)e−sI1(2

√
st)

√
t

s
ds.(A.20)

We multiply equation (A.19) by
√

p(t) and use
√

p(0) = f (0) = 1, then

√
p(t)e−V (t) =

√
p(t)e−t +

∫ ∞
0

f (s)
√

p(t)
√

p(s)e−t e−sI1(2
√

st)

√
t

s
ds.

= Tf (t).

(A.21)

Substituting Z2 into t gives the desired (A.15).
(ii) Recall Qf (t) = ∫∞

0 f (s)k0(t, s) ds and k0(t, s) > 0 for all t . Since f > 0 pointwise,
we get Qf (t) > 0 pointwise too. By [4], Lemma 2.6,∫

R2
D�φ̄e−(Z−�)2

√
p
(
�2
)
f
(
�2)= ζ̄

(
1 − V ′(Z2))e−V (Z2),(A.22)

where V is the same as in (A.19). Since V (t) = t − log(f (0) + v(t)), differentiating gives
1 − V ′(t) = v′(t)

f (0)+v(t)
. Hence, using equation (A.19) and

√
p(0) = 1,

(
1 − V ′(t)

)
e−V (t) = e−t v′(t) = e−t

∫ ∞
0

√
p(s)f (s)e−s ∂

∂t

(
I1(2

√
st)

√
t

s

)
ds

= e−t
∫ ∞

0

√
p(s)f (s)e−sI0(2

√
st) ds,

(A.23)
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where the last equality is by Taylor series of the modified Bessel functions

I0(2
√

st) =
∞∑

m=0

smtm

m!m! , I1(2
√

st)

√
t

s
=

∞∑
m=0

smtm+1

m!(m + 1)! .(A.24)

Multiplying equation (A.23) by
√

p(t), we get√
p(t)

(
1 − V ′(t)

)
e−V (t) =

∫ ∞
0

f (s)
√

p(t)
√

p(s)e−t e−sI0(2
√

st) ds = Qf (t).(A.25)

Substituting Z2 into t , then plugging into
√

p(Z2) · (A.22) gives the desired (A.16). �

PROOF OF PROPOSITION 2.1. Let −N ≤ i ≤ j ≤ N . We first prove the statement for
ν ∈ R. Let �N denote the generator of the random walk on [−N,N], then

(�,−�N�) =
N∑

x=−N

(
φx(−�Nφ̄)x + ψx(−�Nψ̄)x

)= N−1∑
x=−N

(�x+1 − �x)
2.(A.26)

Using assumption (H3) and Theorem A.1, GN
ij (defined in (2.2)) can be expressed as

GN
ij (g, ν) =

∫ ∞
0

EN
i

(
N∏

x=−N

p(LT,x)1X(T )=j

)
dT

=
∫
R2(2N+1)

φ̄iφj e
−(�,−�N�)

N∏
x=−N

p
(
�2

x

)

=
∫
R2(2N+1)

φ̄iφj

N−1∏
x=−N

e−(�x+1−�x)2
N∏

x=−N

p
(
�2

x

)
.

(A.27)

We use Lemma A.3 to calculate this integral iteratively. First, we decompose p(�2
x) =√

p(�2
x)
√

p(�2
x) for all x. Starting from −N , if i > −N , we take one of the

√
p(�2−N+1)

terms, all �2−N terms, and calculate the �−N integral. This matches Lemma A.3(i) with
Z = �−N+1, � = �−N , and f = √

p, giving
√

p
(
�2−N+1

) ∫
R2

D�−Ne−(�−N+1−�−N)2
√

p
(
�2−N

)√
p
(
�2−N

)= T [√p](�2−N+1
)
.(A.28)

The process continues until we reach i. If j < N , we also start from N and integrate out
�N, . . . ,�j+1. This gives

GN
ij (g, ν) =

∫
R2(j−i+1)

φ̄iφj · T N+i[√p](�2
i

) · T N−j [√p](�2
j

)

·
[j−1∏

x=i

e−(�x+1−�x)2

]√
p
(
�2

i

)[ j−1∏
x=i+1

p
(
�2

x

)]√
p
(
�2

j

)
.

(A.29)

We then integrate from i up to j − 1 using Lemma A.3(ii). The only difference is that there
is an extra boson φ̄i that gets carried along. We get

GN
ij (g, ν) =

∫
R2

φ̄jφj · Qj−iT N+i[√p](�2
j

) · T N−j [√p](�2
j

)
.(A.30)
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By Theorem A.2 and the exponential decay of
√

p,

GN
ij (g, ν) =

∫
R2

ψ̄jψj · Qj−iT N+i[√p](�2
j

) · T N−j [√p](�2
j

)

=
∫
R2

Qj−iT N+i[√p](u2 + v2) · T N−j [√p](u2 + v2) 1

π
dudv

=
∫ ∞

0
Qj−iT N+i[√p](t) · T N−j [√p](t) dt

= 〈
Qj−iT N+i[√p], (T N−j [√p])〉,

(A.31)

as desired.
For complex ν, observe that both sides of (A.31) are defined and holomorphic in ν ∈ C.

We get the result by the uniqueness of analytic continuation. �

APPENDIX B: PROOF OF LEMMA 4.1

The proof of Lemma 4.1 is via a direct computation.

PROOF. We first calculate derivatives of λ(g, ν) = ‖Q(g, ν)‖, by viewing Q(g, ν) as a
perturbation of Q(g0, ν0). This calculation is similar to that of the Rayleigh–Schrödinger
series. Then we calculate the derivatives of the function Hn defined in (4.3), just using dif-
ferentiation rules. When the derivatives are evaluated at (g0, ν0), the formulas will simplify
because Q(g0, ν0)h0 = λ(g0, ν0)h0, and the claimed results will become apparent.

Since λ(g, ν) = ‖Q(g, ν)‖ is an isolated simple eigenvalue (Lemma 2.3), there exists δ > 0
such that λ0 = λ(g0, ν0) is distance 2δ away from the rest of the spectrum of Q(g0, ν0). For
(g, ν) near (g0, ν0), the projection operator to the eigenspace Eλ(g,ν) of Q(g, ν) is given by

P(g, ν) = − 1

2πi

∮
|λ0−ζ |=δ

(
Q(g, ν) − ζ

)−1
dζ.(B.1)

Thus, we have QPh0 = λPh0, and

λ = 〈QPh0, h0〉
〈Ph0, h0〉 .(B.2)

We differentiate this equation. Note the dependence on g and ν only come from Q and P .
We use subscripts to denote partial derivatives. The ν-derivative of (B.2) is

λν = 〈QνPh0, h0〉 + 〈QPνh0, h0〉
〈Ph0, h0〉 − 〈QPh0, h0〉〈Pνh0, h0〉

〈Ph0, h0〉2 .(B.3)

When evaluated at (g0, ν0), we know Ph0 = h0, Qh0 = λ0h0, ‖h0‖2 = 1, and Q is self-
adjoint. Hence,

λν |g0,ν0 = 〈Qνh0, h0〉 + 〈Pνh0,Qh0〉 − λ0〈Pνh0, h0〉 = 〈Qνh0, h0〉.(B.4)

Similarly, λg|g0,ν0 = 〈Qgh0, h0〉.
For second derivatives, we let ∗ = g, ν, differentiate (B.3), and then evaluate at (g0, ν0).

This gives

λν∗|g0,ν0 = 〈Qν∗h0, h0〉 + 〈QνP∗h0, h0〉 + 〈Q∗Pνh0, h0〉
− 〈Qνh0, h0〉〈P∗h0, h0〉 − 〈Q∗h0, h0〉〈Pνh0, h0〉.

(B.5)
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We claim 〈P∗h0, h0〉 = 0. This is because

〈P∗h0, h0〉 = 1

2πi

∮
|λ0−ζ |=δ

〈
(Q − ζ )−1Q∗(Q − ζ )−1h0, h0

〉
dζ

= 1

2πi

∮
|λ0−ζ |=δ

1

λ0 − ζ

〈
Q∗h0, (Q − ζ̄ )−1h0

〉
dζ

= 1

2πi
〈Q∗h0, h0〉

∮
|λ0−ζ |=δ

1

(λ0 − ζ )2 dζ = 0.

(B.6)

Next, we calculate 〈QνP∗h0, h0〉 in equation (B.5). Since Q is self-adjoint, by the spectral
theorem, there exists a real orthonormal eigenbasis {(μj ,ψj )}j of Q(g0, ν0). Using these,
we decompose

Q∗h0 =∑
j

〈Q∗h0,ψj 〉ψj ,(B.7)

so

〈QνP∗h0, h0〉 = 1

2πi

∮
|λ0−ζ |=δ

〈
Qν(Q − ζ )−1Q∗(Q − ζ )−1h0, h0

〉
dζ

= 1

2πi

∮
|λ0−ζ |=δ

1

λ0 − ζ

〈
(Q − ζ )−1Q∗h0,Qνh0

〉
dζ

= 1

2πi

∮
|λ0−ζ |=δ

1

λ0 − ζ

∑
j

〈Q∗h0,ψj 〉〈Qνh0,ψj 〉
μj − ζ

dζ

= − ∑
μj �=λ0

〈Q∗h0,ψj 〉〈Qνh0,ψj 〉
μj − λ0

.

(B.8)

In the last equality, the μj = λ0 term vanishes for the same reason as in (B.6). To write this
more compactly, we define P ⊥ = I − P where I is the identity operator, then equation (B.8)
can be written as

〈QνP∗h0, h0〉 = 〈
(λ0 − Q)−1P ⊥Q∗h0,P

⊥Qνh0
〉
.(B.9)

We also have 〈Q∗Pνh0, h0〉 equal to the same expression, by the symmetry between ∗ and ν

in equation (B.8). Putting together, equation (B.5) simplifies to

λν∗|g0,ν0 =〈Qν∗h0, h0〉 + 2
〈
(λ0 − Q)−1P ⊥Q∗h0,P

⊥Qνh0
〉
.(B.10)

We next turn to the derivatives of Hn(g, ν) = 〈Qn(g, ν)h0, h0〉1/n. A direct computation
gives

∂νHn = 1

n

〈
Qnh0, h0

〉1/n−1〈(
Qn)

νh0, h0
〉
,(B.11)

∂g∂νHn = 1

n

(
1

n
− 1

)〈
Qnh0, h0

〉1/n−2〈(
Qn)

gh0, h0
〉〈(

Qn)
νh0, h0

〉
(B.12)

+ 1

n

〈
Qnh0, h0

〉1/n−1〈(
Qn)

νgh0, h0
〉
.

When evaluated at (g0, ν0), we have Q(g0, ν0)h0 = λ0h0 with λ0 = 1. This gives

∂νHn(g0, ν0) = 1

n

〈(
Qn)

νh0, h0
〉= 〈Qνh0, h0〉 = λν,(B.13)
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∂g∂νHn(g0, ν0) = 1

n

(
1

n
− 1

)〈(
Qn)

gh0, h0
〉〈(

Qn)
νh0, h0

〉+ 1

n

〈(
Qn)

νgh0, h0
〉

= (1 − n)〈Qgh0, h0〉〈Qνh0, h0〉 + 〈Qνgh0, h0〉

+ 2

n

∑
0≤i<j≤n

〈
Qi−1QνQ

j−i−1QgQ
n−jh0, h0

〉
(B.14)

= (1 − n)〈Qgh0, h0〉〈Qνh0, h0〉 + 〈Qνgh0, h0〉

+ 2

n

∑
0≤i<j≤n

〈
Qj−i−1Qgh0,Qνh0

〉
.

For the last sum, we decompose Qgh0 = PQgh0 + P ⊥Qgh0 and similarly for Qνh0. The
parts that are in the eigenspace E1 sum to cancel with (1 − n)〈Qgh0, h0〉〈Qνh0, h0〉 exactly,
leaving

∂g∂νHn(g0, ν0) = 〈Qνgh0, h0〉 + 2

n

∑
0≤i<j≤n

〈
Qj−i−1P ⊥Qgh0,P

⊥Qνh0
〉
.(B.15)

Summing diagonally, as n → ∞ we get

∂g∂νHn(g0, ν0) → 〈Qνgh0, h0〉 + 2
〈
(1 − Q)−1P ⊥Qgh0,P

⊥Qνh0
〉= λνg|g0,ν0,(B.16)

by the first computation (B.10). The calculation for λνν |g0,ν0 is analogous. �
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