
Gaussian deconvolution and the lace expansion

Yucheng Liu
Joint work with Gordon Slade

University of British Columbia

Workshop in Honour of Takashi Hara, Dec 2023, NUS

Yucheng Liu (UBC) Gaussian deconvolution December 2023 1 / 24



Convolution equations on Zd

f ∗ g(x) =
∑

y∈Zd f(y)g(x− y)

Random walk two-point function (d > 2):
Let D(x) = 1

2d1{|x| = 1} and δ(x) = δ0,x = 1{x = 0}, then

C(x) =

∞∑
n=0

D∗n(x) = δ0,x +D(x) +D ∗D(x) + · · ·

satisfies the convolution equation C = δ +D ∗ C.

(Bond) Percolation connection probability (d large):
Let τp(x) = Pp(0↔ x), then for p ≤ pc,

τp = δ + Πp + pD ∗ (δ + Πp) ∗ τp.

Self-avoiding walk two-point function (d > 4): For z ≤ zc,

Gz = δ + zD ∗Gz + Πz ∗Gz.
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Deconvolution

Random walk: Since C(x) =
∑∞

n=0D
∗n(x) satisfies C = δ +D ∗C,

we can rearrange it into

(δ −D) ∗ C = δ.

So C is the deconvolution of the operator δ−D, which is minus the
discrete Laplacian. We also call C(x) the lattice Green function.
It is well-known that as |x| → ∞,

C(x) =
ad
|x|d−2

+O

(
1

|x|d

)
, ad =

dΓ(d−22 )

2πd/2
.

We consider the convolution equation

F ∗G = δ

with a given F : Zd → R and prove G(x) ∼ const · |x|−(d−2) under
some assumptions on F .
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Fourier transform

Let Td = (R/2πZ)d be the continuum torus, which we identify
with (−π, π]d ⊂ Rd. We will use the L1 Fourier transform

f̂(k) =
∑
x∈Zd

f(x)eik·x (k ∈ Td)

and the inverse Fourier transform

f(x) =

∫
Td
f̂(k)e−ik·x

dk

(2π)d
(x ∈ Zd).

We will also use the L2 Fourier transform.

Random walk example:

C(x) =

∫
Td

e−ik·x

1− D̂(k)

dk

(2π)d
, D̂(k) = d−1

d∑
j=1

cos kj

(cf. (δ −D) ∗ C = δ).
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Main result: Gaussian deconvolution

We solve F ∗G = δ using Fourier integral G(x) =

∫
Td

e−ik·x

F̂ (k)

dk

(2π)d
.

Theorem (Hara’08, L.–Slade’23)

Let d > 2. Suppose F : Zd → R is a Zd-symmetric function, and
suppose there are K1,K2 > 0, ρ > max(0, d−82 ) such that, for all x ∈ Zd
and k ∈ Td,

|F (x)| ≤ K1

|x|d+2+ρ
, F̂ (0) = 0, F̂ (k)− F̂ (0) ≥ K2|k|2.

Then
G(x) ∼ ad

κ|x|d−2
as |x| → ∞,

where κ = −
∑

x∈Zd |x|2F (x) ∈ (0,∞).

We do not assume F (x) ≤ 0 for x 6= 0.
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Gaussian deconvolution

The theorem was first proved by Hara in 2008 using intricate
Fourier analysis, without the assumption that ρ > d−8

2 (only
requiring ρ > 0) in

|F (x)| ≤ K1

|x|d+2+ρ
.

This extra assumption is satisfied for all known applications.

The theorem directly applies to self-avoiding walk. For
percolation, we combine the theorem with an elementary
convolution estimate. We obtain

Gzc(x), τpc(x) =
const

|x|d−2
+O

(
1

|x|d−ε

)
with arbitrary ε > 0. Hara obtained ε = 2− 2/d.
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Gaussian deconvolution

Our proof is completely different and is short and simple. It is
inspired by the work of Slade on weakly self-avoiding walks in
2022. But to cover percolation, we need new ideas.

The decay assumption on F (x) can be replaced by regularity
assumptions on |x|2+εF (x) and |x|d−2F (x).

(Ongoing) Extension to models on Rd, e.g., random connection
model.

(Ongoing) Anisotropic |x|−(d−2) decay (using only Z2-symmetry).
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Strategy of proof

Recall G(x) =

∫
Td

e−ik·x

F̂ (k)

dk

(2π)d
and κ = −

∑
x∈Zd |x|2F (x) ∈ (0,∞).

We decompose

Ĝ :=
1

F̂
= κ−1

1

1− D̂
+

(1− D̂)− κ−1F̂
(1− D̂)F̂

= κ−1
1

1− D̂
+

Ê

(1− D̂)F̂
,

where E = A− κ−1F with A = δ −D. The constant κ is chosen to
make ∑

x∈Zd
|x|2E(x) = 0,

so that the remainder would be more regular then the leading term.
By inverse Fourier transform, since C(x) =

∫
Td

e−ik·x

1−D̂(k)
dk

(2π)d
, we get

G(x) = κ−1C(x) + f(x),

where f is the inverse Fourier transform of f̂ := Ê/(ÂF̂ ).
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Strategy of proof

From
G(x) = κ−1C(x) + f(x),

and

C(x) =
ad
|x|d−2

+O

(
1

|x|d

)
,

it suffices to prove f(x) = o(|x|−(d−2)) as |x| → ∞.

The choice of κ allows us to take d− 2 (weak) derivatives of
f̂ = Ê/(ÂF̂ ). We will show all these derivatives are integrable, then by
the Riemann–Lebesgue lemma, we get |x|d−2f(x)→ 0 as |x| → ∞.
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Intuition

Since E = A− κ−1F is symmetric and satisfies∑
x∈Zd

E(x) =
∑
x∈Zd
|x|2E(x) = 0,

we roughly have ∇γÊ(k) . |k|2+σ−|γ| for some σ ∈ (0,min{ρ, 2}).
By the assumed infrared bound, we have∣∣∣ 1

Â(k)

∣∣∣, ∣∣∣ 1

F̂ (k)

∣∣∣ . 1

|k|2
.

Taking derivatives roughly gives∣∣∣∇γ( 1

Â(k)

)∣∣∣, ∣∣∣∇γ( 1

F̂ (k)

)∣∣∣ . 1

|k|2+|γ|
.

Then by the product rule, we get

|∇d−2f̂ | =
∣∣∣∇d−2( Ê

ÂF̂

)∣∣∣ . |k|2+σ

|k|2+2+d−2 =
|k|σ

|k|d
∈ L1(Td).
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Â(k)

∣∣∣, ∣∣∣ 1

F̂ (k)

∣∣∣ . 1

|k|2
.

Taking derivatives roughly gives∣∣∣∇γ( 1
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ÂF̂

)∣∣∣ . |k|2+σ

|k|2+2+d−2 =
|k|σ

|k|d
∈ L1(Td).

Yucheng Liu (UBC) Gaussian deconvolution December 2023 10 / 24



Intuition

|∇d−2f̂ | =
∣∣∣∇d−2( Ê

ÂF̂

)∣∣∣ . |k|2+σ

|k|2+2+d−2 =
|k|σ

|k|d
∈ L1(Td)

The intuition works for self-avoiding walk (Slade 2022) but does
not work for percolation, where we cannot take enough classical
derivatives (Π(x) does not decay fast enough).

Solution: We use weak derivatives, and replace power-counting by
Hölder’s inequality.
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Weak derivative

Let C∞c (Td) denote the space of infinitely differentiable, compactly
supported test functions φ : Td → R. (For the torus Td, every function
has compact support.)

Definition (Weak derivative)

Suppose u, v ∈ L1(Td) and α is a multi-index. We say that v is the αth

weak partial derivative of u, written ∇αu = v, if, for all test functions
φ ∈ C∞c (Td), ∫

Td
u∇αφ = (−1)|α|

∫
Td
vφ.

The requirement is the usual integration by parts formula, so u is
weakly differentiable if it is classically differentiable.

Lemma

The weak derivative satisfies the usual product and quotient rules,
provided the result is integrable.
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Weak derivative and Fourier transform

For us, we just need the fact that the L2 Fourier transform gives the
weak derivative. We write F [f ] = f̂ for the L2 Fourier transform of
f ∈ `2(Zd).

Lemma

Let f : Zd → R and α be a multi-index. Suppose xαf(x) ∈ `2(Zd).
Then the αth weak partial derivative of f̂ is given by

∇αf̂ = F [(ix)αf(x)].

We use the lemma to make sense of ∇d−2F̂ (k). This is the origin of our
restriction ρ > d−8

2 on

|F (x)| ≤ K1

|x|d+2+ρ
;

we need |x|d−2F (x) ∈ `2(Zd).
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Proof of main result

We want to show f̂ = Ê
ÂF̂

is d− 2 times weakly differentiable. By the

product and quotient rules, ∇αf̂ is given by a linear combination of
terms of the form(

i∏
n=1

∇δnÂ
Â

)(
∇α2Ê

ÂF̂

)(
j∏

m=1

∇γmF̂
F̂

)
,

where α = α1 + α2 + α3, 0 ≤ i ≤ |α1|, 0 ≤ j ≤ |α3|,
∑i

n=1 δn = α1, and∑j
m=1 γm = α3, provided these terms are integrable.

Lemma

Let |γ| < 1
2d+ 2 + ρ, and choose σ ∈ (0, ρ) such that σ ≤ 2. Then

∇γÂ
Â

,
∇γF̂
F̂
∈ Lq (q−1 >

|γ|
d

),
∇γÊ
ÂF̂

∈ Lq (q−1 >
2− σ + |γ|

d
).
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Â
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Proof of main result

Lemma

Let |γ| < 1
2d+ 2 + ρ, and choose σ ∈ (0, ρ) such that σ ≤ 2. Then

∇γÂ
Â

,
∇γF̂
F̂
∈ Lq (q−1 >

|γ|
d

),
∇γÊ
ÂF̂

∈ Lq (q−1 >
2− σ + |γ|

d
).

By Hölder’s inequality,(
i∏

n=1

∇δnÂ
Â

)(
∇α2Ê

ÂF̂

)(
j∏

m=1

∇γmF̂
F̂

)
∈ Lr(Td)

as long as

1

r
>

∑i
n=1|δn|
d

+
2− σ + |α2|

d
+

∑j
m=1|γm|
d

=
|α|+ 2− σ

d
.

Since |α| ≤ d− 2 and σ > 0, we can take r = 1. This proves that f̂ is
d− 2 times weakly differentiable and concludes the proof.
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Proof of lemma

Lemma

Let |γ| < 1
2d+ 2 + ρ, and choose σ ∈ (0, ρ) such that σ ≤ 2. Then

∇γÂ
Â

,
∇γF̂
F̂
∈ Lq (q−1 >

|γ|
d

),
∇γÊ
ÂF̂

∈ Lq (q−1 >
2− σ + |γ|

d
).

Bound on ∇γÂ/Â.

Recall A = δ −D has finite support. If |γ| = 1, by Taylor’s theorem
and symmetry, we have |∇γÂ(k)| . |k|. If |γ| ≥ 2, Taylor’s theorem
gives |∇γÂ(k)| . 1 instead. Together with the infrared bound, we get∣∣∣∇γÂ

Â
(k)
∣∣∣ . 1

|k|min(|γ|,2) ∈ L
q(Td) (q−1 >

min(|γ|, 2)

d
),

which is stronger than the desired result.

Yucheng Liu (UBC) Gaussian deconvolution December 2023 16 / 24



Proof of lemma

Bound on ∇γF̂ /F̂ .

The |γ| = 1 case is the same as for Â, because
∑

x |x|2|F (x)| is finite.
For |γ| ≥ 2, the decay assumption |F (x)| . |x|−(d+2+ρ) and
boundedness of the Fourier transform imply

∇γF̂ ∈ L
d
|γ|−2 (Td) (2 ≤ |γ| < 1

2d+ 2 + ρ).

Since |F̂−1(k)| . |k|−2 ∈ Lp for all p−1 > 2/d by the infrared bound, it
follows from Hölder’s inequality that ∇γF̂ /F̂ ∈ Lq for all
q−1 > (|γ| − 2 + 2)/d, as desired.
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Proof of lemma

Bound on ∇γÊ/(ÂF̂ ).

Let σ ∈ (0, ρ) be such that σ ≤ 2. We use the fact that E = A− κ−1F
has the same |x|−(d+2+ρ) decay as F . If |γ| < 2 + σ, it follows from∑

x∈Zd
E(x) =

∑
x∈Zd
|x|2E(x) = 0,

symmetry, and infrared bounds that∣∣∣∇γÊ
ÂF̂

(k)
∣∣∣ . |k|2+σ−|γ||k|2|k|2

=
1

|k|2−σ+|γ|
,

which is in Lq for q−1 > (2− σ + |γ|)/d, as desired.
If |γ| ≥ 2 + σ, we use the Fourier transform to bound ∇γÊ, then use
Hölder’s inequality (as in the |γ| ≥ 2 case for F̂ ).

This concludes the proof of the lemma.
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Main result (revisit)

Theorem (Hara’08, L.–Slade’23)

Let d > 2. Suppose F : Zd → R is a Zd-symmetric function, and
suppose there are K1,K2 > 0, ρ > max(0, d−82 ) such that, for all x ∈ Zd
and k ∈ Td,

|F (x)| ≤ K1

|x|d+2+ρ
, F̂ (0) = 0, F̂ (k)− F̂ (0) ≥ K2|k|2.

Then
G(x) ∼ ad

κ|x|d−2
as |x| → ∞,

where κ = −
∑

x∈Zd |x|2F (x) ∈ (0,∞).

We have proved G(x) = κ−1C(x) + f(x) and ∇d−2f̂ ∈ L1(Td).
Error estimate?
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Better error estimate

We can improve the error to f(x) = O(|x|−(d−2+δ)), δ > 0, by taking
more derivatives of f̂ .
For fractional powers of |x|, we use the following integral
representation: For δ ∈ (0, 1),

(sgnx1)|x1|δ =
1

cδ

∫ ∞
0

sin(x1u)

u1+δ
du, cδ =

∫ ∞
0

sinu

u1+δ
du ∈ (0,∞).

Multiplying by sin(x1u) produces phase shifts in the Fourier space.

Lemma (Fractional derivative)

Let ũ = (u, 0, . . . , 0). Suppose that ĝ ∈ L1(Td) and that

1

2icδ

∫ ∞
0

1

u1+δ
∥∥ĝ(·+ ũ)− ĝ(· − ũ)

∥∥
L1(Td)du <∞.

Then supx∈Zd |x1|δ|g(x)| <∞.
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Better error estimate

Lemma (Fractional derivative)

Let ũ = (u, 0, . . . , 0). Suppose that ĝ ∈ L1(Td) and that

1

2icδ

∫ ∞
0

1

u1+δ
∥∥ĝ(·+ ũ)− ĝ(· − ũ)

∥∥
L1(Td)du <∞.

Then supx∈Zd |x1|δ|g(x)| <∞.

We use the lemma with ĝ = ∇αf̂ where |α| = d− 2.
Write

(Uuĝ)(k) = ĝ(k + ũ)− ĝ(k − ũ).

Estimates on Uu(∇αf̂) then lead to more decay of f(x).
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Estimates on Uu(∇αf̂)

Since ∇αf̂ is given by a linear combination of terms of the form(
i∏

n=1

∇δnÂ
Â

)(
∇α2Ê

ÂF̂

)(
j∏

m=1

∇γmF̂
F̂

)
,

and Uu is taking a finite difference, we apply Uu to one factor at a time.

Lemma

Let γ be a multi-index, 0 ≤ η ≤ 1, with |γ|+ η < 1
2d+ 2 + ρ. Choose

σ ∈ (0, ρ) such that σ ≤ 2, and choose q1, q2 satisfying

q−11 >
|γ|+ η

d
, q−12 >

2− σ + |γ|+ η

d
.

Then for 0 ≤ u ≤ 1,∥∥∥Uu(
∇γÂ
Â

)
∥∥∥
q1
,
∥∥∥Uu(

∇γF̂
F̂

)
∥∥∥
q1
,
∥∥∥Uu(

∇γÊ
ÂF̂

)
∥∥∥
q2

. uη.
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Estimates on Uu(∇αf̂): an ingredient

(Uuĝ)(k) = ĝ(k + ũ)− ĝ(k − ũ).

Lemma (“Sobolev inequality”)

Let g : Td → C be weakly differentiable. Fix 1 ≤ p < d. Assume
∇ejg ∈ Lp(Td) for all j. Let 0 ≤ η ≤ 1 and define pη by 1

pη
= 1

p −
1−η
d .

Then

‖Uug‖pη . uη‖g‖W 1,p ,

where ‖g‖W 1,p = (‖g‖pp +
∑d

j=1‖∇jg‖
p
p)1/p.
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Thank You!
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Near-critical upper bound

The method can be extended to study a family of convolution
equations,

Fz ∗Gz = δ.

With Fz satisfying similar “massive” assumptions, we prove the
uniform upper bound

Gz(x) ≤ c0
max(1, |x|d−2)

e−c1m(z)|x|,

where m(z) is the exponential decay rate of Gz(x), for z ∈ [zc − δ, zc),
δ > 0.
The result applies to strictly self-avoiding walk in dimensions d > 4.

Reference: Y. Liu. A general approach to massive upper bound for
two-point function with application to self-avoiding walk torus plateau.
Preprint, arXiv:2310.17321.
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