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Main purpose:

To introduce some basic knowledge of complex numbers to students so
that they are prepared to handle complex-valued roots when solving the
characteristic polynomials for eigenvalues of a matrix.

Eg: In high school, students learned that the roots of a quadratic equa-
tion az® + bz + ¢ =0 (a # 0) are given by

—b+ Vb2 — 4ac

2a

T2 =

where the sign of the discriminant A = b* —4ac determines the following
three outcomes

A >0, 2 real roots;
[f¢ A=0, 1 (repeated) real root;
A <0, no real root.

When complex-valued roots are allowed as in the case when solving
eigenvalues, however, a polynomial of degree n always has n roots
(Gauss’ Fundamental Theorem of Algebra), of which some or all of
them can be identical (repeated). Thus, a quadratic equation always
has 2 roots irrespective of the sign of A.



5.1 Definitions and basic concepts

The imaginary number i:

i=v-1 = if=-1 (1)

Every imaginary number is expressed as a real-valued multiple of i:

V=9 = V9vV—1 = V9 = 3.

A complex number:

2 =a+ i, (2)

where a, b are real, is the sum of a real and an imaginary number.

The real part of z: Re{z} = a is a real number.

The imaginary part of z: Im{z} = b is a also a real number.



A complex number represents a point (a, b) in a 2D space, called
the complex plane. Thus, it can be regarded as a 2D vector expressed
in form of a number/scalar. Therefore, there exists a one-to-one corre-
spondence between a 2D vectors and a complex numbers.

AIm{z}
o z=a+bi
Re{z)
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IS
z=a-bi

Figure 1: A complex number z and its conjugate Z in complex space. Horizontal axis contains all real numbers,
vertical axis contains all imaginary numbers.

The complex conjugate:

Z=a— b,
which is obtained by reversing the sign of Im{z}.

Notice that:

Z;Z:a, [m{z}:ZQ_Z_Z:b.

Re{z} =

Therefore, both Re{z} and I'm{z} are linear combinations of z and Z.



5.2 Basic computations between complex numbers

Addition/subtraction:

If 21 =a1+ 012, 20 = ag + bt (al, as, by, by € R% then

21 + 29 = (CL1 + bli) + (CLQ + bQZ) = (CLl + CLQ) + (bl + bg)l

Or, real parts plus/minus real parts, imaginary parts plus/minus imag-
inary parts.

Multiplication by a real scalar a:

az1 = aay + abqe.

Multiplication between complex numbers:

2129 = (a1+b1i)(ag+b2i) = a1a2+albgi+a2b1i+blb2i2 = (a1a2—blbg)+(albg+agbl)z’.

All rules are identical to those of multiplication between real numbers,
just remember that i = —1.



Length /magnitude of a complex number z = a + bi

12| = V22 = \/(a + bi)(a — bi) = Va2 + b2,

which is identical to the length of a 2D vector (a, b).

Division between complex numbers:

é _ 2129 _ (CL1 + bli)(ag — bQZ) _ (a1a2 + ble) + (a2b1 — a152>i
2y 2279 | 22| az + b '

Eg 5.2.1 Given that z1 = 3+ 44, 20 = 1 — 27, calculate

1. 21 — 29,

2. 3

3. ’21’;

4. 2
21

Ans:

lzg—2=038-1)+4—(-2)i =2+ 6i;

2. 51—§—|—§’L— 15‘|‘2’L,

3. ’21’ = \/Zlfl = ‘\/32 ‘|—42 = \/25 = 5;
o zmFH _ (1-29)3—4)  —5-10i _ 1 2.

4 2 =5 = 52 =725 ~— 5 5“



5.3 Complex-valued exponential and Euler’s formula

Euler’s formula:
e = cost +isint. (3)

Based on this formula and that e = cos(—t)+i sin(—t) = cos t—i sin t:

eit 4 it . it _ it
_ sint = — (4)

cost =

Why? Here is a way to gain insight into this formula.

Recall the Taylor series of e’




0 0
—1 mt2m —1 mt2m—|—1
:Z%JFZ‘Z((QJH—D' = cost +7sint.
. — !

m=0

Remarks:

e Sine and cosine functions are actually linear combinations of expo-
nential functions with imaginary exponents.

e Similarly, hyperbolic sine and cosine functions are linear combina-
tions of exponential functions with real exponents.
t_ ot t o —t

e —e€ e +e

—, cosh(t) = :

2 2

sinh(t) =



5.4 Polar representation of complex numbers

For any complex number z = x + iy (# 0), its length and angle w.r.t.
the horizontal axis are both uniquely defined.
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Figure 2: A complex number z = x + iy can be expressed in the polar form z = pe¥, where p = /22 + 2 is its
length and 6 the angle between the vector and the horizontal axis. The fact x = pcosf, y = psin @ are consistent
with Euler’s formula e = cos @ + i sin 6.

One can convert a complex number from one form to the other by using
the Euler’s formula:

2= +1y & 2 = pe'. where
x =pcosl, y=psind; 0=\ 1%+ 1y2 taan—lg;
x

where we often restrict 0 < 6 < 27w or —m < 6 < 7. Otherwise,
the conversion from Cartesian to polar coordinates is not unique, 8 can
differ by an integer multiple of 27.



Eg 5.4.1 Convert the following complex numbers from one form to the
other.

1. z = 31;

2. z=1;

3.2 =1+iV3;
4 z = -2 -2,
5. 2z = e 'C;

6. 2 = He't;

7

T
.z = —be '3,

Ans:
1. 2 = 3i = 3¢'?;
2. z=1=¢" =1, (for a positive real number, there is no change!);
3. 2=1+ 2\/3 _ \/12 4+ (\/3)2eitan_1\/T§ _ 262'%;
1oz =—2—2= /(722 + (—22'" () = 2y/2F = 2/2e7

(
5.2 =e 6 = cos(—¢) +isin(—g) = V3 _ ;L.

7.2 = —de 8 = (—4) [COS(—%) +isin(—%)] = (—4) [% - 2—2} =
—2 4+ 2v/2i.
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Remark: It is important to know that the collection of all complex
numbers of the form z = € form a circle of radius one (unit circle) in
the complex plane centered at the origin. In other words, the equation
for a unit circle centered at the origin in complex plane is z = € (see
figure).

Im{z}
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Figure 3: The collection of all complex numbers of the form z = e€? form a unit circle centered at the origin in
the complex plane.

Remark: Rotation of a vector represented by a complex number z =
pe'? counter-clockwise by angle ¢ is achieved by multiplying e to it:

e95 — i pel® — pei+e),

Remark: The product between z; = p1€i91 and zo = p2€i92 yields

2129 = pre poe® = (pypo)e’1t02)

which is a vector of length p1po and an angle 6; + 6.
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Eg 5.4.2 Find all roots of v/1, complex and real.

Ans:

1 =e’ = ¢l = i, for any integer n.

Therefore,

V1= 13 = (6(2””)i) —e3 ! for any integer n.

Often, the angle @ for a complex number expressed in form of e’ is
restricted in the range 0 < 6 < 27.

s 47 -
If so, ¥/1 has only three roots in this range: v/1 = 1, e%z, e3’,
Im{z}
Y1 =6
A1 =1
y
Re{z}
AT =es"

Figure 4: The cubic roots of number 1 in complex plane.
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5.5 Polynomials of degree n must have n roots!

Eg 5.5.1 Find all roots of 22 + 2z + 10 = 0.

Ans: Notice that

422410 =2"4+224+1+9=(2+1)*+9=0.

There is no real root! But there are two complex-valued roots forming
a pair of complex conjugates.

(z+12%49=0 = (24+1)?=-9 = z2+1=4V/-9 = z=-1+3i

Final remarks:

(a) Any polynomial of degree n can always be factored into the product
of n terms in which z;, (i =1,...,n) are the n roots.

Pu(2) = ap2"+a, 12" - Aagztag = an(z—2,) (2—20-1) - (2—21).

(b) Complex roots of a polynomial always occur as a pair of complex
conjugates: z4+ = a =+ bi.

13



