Lecture 5. Complex Numbers and Euler's Formula

University of British Columbia, Vancouver
Yue-Xian Li
March 2017

Main purpose:

To introduce some basic knowledge of complex numbers to students so that they are prepared to handle complex-valued roots when solving the characteristic polynomials for eigenvalues of a matrix.

Eg: In high school, students learned that the roots of a quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are given by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

where the sign of the discriminant $\Delta=b^{2}-4 a c$ determines the following three outcomes

$$
\text { If } \begin{cases}\Delta>0, & 2 \text { real roots; } \\ \Delta=0, & 1 \text { (repeated) real root; } \\ \Delta<0, & \text { no real root. }\end{cases}
$$

When complex-valued roots are allowed as in the case when solving eigenvalues, however, a polynomial of degree n always has n roots (Gauss' Fundamental Theorem of Algebra), of which some or all of them can be identical (repeated). Thus, a quadratic equation always has 2 roots irrespective of the sign of Δ.

5.1 Definitions and basic concepts

The imaginary number i :

$$
\begin{equation*}
i \equiv \sqrt{-1} \quad \Longleftrightarrow \quad i^{2}=-1 \tag{1}
\end{equation*}
$$

Every imaginary number is expressed as a real-valued multiple of i :

$$
\sqrt{-9}=\sqrt{9} \sqrt{-1}=\sqrt{9} i=3 i .
$$

A complex number:

$$
\begin{equation*}
z=a+b i, \tag{2}
\end{equation*}
$$

where a, b are real, is the sum of a real and an imaginary number.

The real part of z: $\operatorname{Re}\{z\}=a$ is a real number.

The imaginary part of z: $\operatorname{Im}\{z\}=b$ is a also a real number.

A complex number represents a point (a, b) in a 2D space, called the complex plane. Thus, it can be regarded as a 2 D vector expressed in form of a number/scalar. Therefore, there exists a one-to-one correspondence between a 2 D vectors and a complex numbers.

Figure 1: A complex number z and its conjugate \bar{z} in complex space. Horizontal axis contains all real numbers, vertical axis contains all imaginary numbers.

The complex conjugate:

$$
\bar{z}=a-b i
$$

which is obtained by reversing the sign of $\operatorname{Im}\{z\}$.

Notice that:

$$
\operatorname{Re}\{z\}=\frac{z+\bar{z}}{2}=a, \quad \operatorname{Im}\{z\}=\frac{z-\bar{z}}{2 i}=b
$$

Therefore, both $\operatorname{Re}\{z\}$ and $\operatorname{Im}\{z\}$ are linear combinations of z and \bar{z}.

5.2 Basic computations between complex numbers

Addition/subtraction:

If $z_{1}=a_{1}+b_{1} i, z_{2}=a_{2}+b_{2} i\left(a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}\right)$, then

$$
z_{1} \pm z_{2}=\left(a_{1}+b_{1} i\right) \pm\left(a_{2}+b_{2} i\right)=\left(a_{1} \pm a_{2}\right)+\left(b_{1} \pm b_{2}\right) i .
$$

Or, real parts plus/minus real parts, imaginary parts plus/minus imaginary parts.

Multiplication by a real scalar α :

$$
\alpha z_{1}=\alpha a_{1}+\alpha b_{1} i .
$$

Multiplication between complex numbers:

$z_{1} z_{2}=\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)=a_{1} a_{2}+a_{1} b_{2} i+a_{2} b_{1} i+b_{1} b_{2} i^{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) i$.

All rules are identical to those of multiplication between real numbers, just remember that $i^{2}=-1$.

Length/magnitude of a complex number $z=a+b i$

$$
|z|=\sqrt{z \bar{z}}=\sqrt{(a+b i)(a-b i)}=\sqrt{a^{2}+b^{2}},
$$

which is identical to the length of a 2 D vector (a, b).

Division between complex numbers:

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} \bar{z}_{2}}{z_{2} \bar{z}_{2}}=\frac{\left(a_{1}+b_{1} i\right)\left(a_{2}-b_{2} i\right)}{\left|z_{2}\right|^{2}}=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)+\left(a_{2} b_{1}-a_{1} b_{2}\right) i}{a_{2}^{2}+b_{2}^{2}} .
$$

Eg 5.2.1 Given that $z_{1}=3+4 i, z_{2}=1-2 i$, calculate

1. $z_{1}-z_{2}$;
2. $\frac{z_{1}}{2}$;
3. $\left|z_{1}\right|$;
4. $\frac{z_{2}}{z_{1}}$.

Ans:

1. $z_{1}-z_{2}=(3-1)+(4-(-2)) i=2+6 i$;
2. $\frac{z_{1}}{2}=\frac{3}{2}+\frac{4}{2} i=1.5+2 i$;
3. $\left|z_{1}\right|=\sqrt{z_{1} \overline{z_{1}}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$;
4. $\frac{z_{2}}{z_{1}}=\frac{z_{2} \bar{z}_{1}}{z_{1} \bar{z}_{1}}=\frac{(1-2 i)(3-4 i)}{5^{2}}=\frac{-5-10 i}{25}=-\frac{1}{5}-\frac{2}{5} i$.

5.3 Complex-valued exponential and Euler's formula

Euler's formula:

$$
\begin{equation*}
e^{i t}=\cos t+i \sin t \tag{3}
\end{equation*}
$$

Based on this formula and that $e^{-i t}=\cos (-t)+i \sin (-t)=\cos t-i \sin t$:

$$
\begin{equation*}
\cos t=\frac{e^{i t}+e^{-i t}}{2}, \quad \sin t=\frac{e^{i t}-e^{-i t}}{2 i} \tag{4}
\end{equation*}
$$

Why? Here is a way to gain insight into this formula.

Recall the Taylor series of e^{t} :

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}
$$

Suppose that this series holds when the exponent is imaginary.

$$
\begin{aligned}
e^{i t} & =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!}=\sum_{n \text { even }}^{\infty} \frac{(i t)^{n}}{n!}+\sum_{n \text { odd }}^{\infty} \frac{(i t)^{n}}{n!}=\sum_{m=0}^{\infty} \frac{(i t)^{2 m}}{(2 m)!}+\sum_{m=0}^{\infty} \frac{(i t)^{2 m+1}}{(2 m+1)!} \\
& =\sum_{m=0}^{\infty} \frac{i^{2 m} t^{2 m}}{(2 m)!}+\sum_{m=0}^{\infty} \frac{i^{2 m+1} t^{2 m+1}}{(2 m+1)!}=\sum_{m=0}^{\infty} \frac{\left(i^{2}\right)^{m} t^{2 m}}{(2 m)!}+\sum_{m=0}^{\infty} \frac{i\left(i^{2}\right)^{m} t^{2 m+1}}{(2 m+1)!}
\end{aligned}
$$

$$
=\sum_{m=0}^{\infty} \frac{(-1)^{m} t^{2 m}}{(2 m)!}+i \sum_{m=0}^{\infty} \frac{(-1)^{m} t^{2 m+1}}{(2 m+1)!}=\cos t+i \sin t
$$

Remarks:

- Sine and cosine functions are actually linear combinations of exponential functions with imaginary exponents.
- Similarly, hyperbolic sine and cosine functions are linear combinations of exponential functions with real exponents.

$$
\sinh (t)=\frac{e^{t}-e^{-t}}{2}, \quad \cosh (t)=\frac{e^{t}+e^{-t}}{2}
$$

5.4 Polar representation of complex numbers

For any complex number $z=x+i y(\neq 0)$, its length and angle w.r.t. the horizontal axis are both uniquely defined.

Figure 2: A complex number $z=x+i y$ can be expressed in the polar form $z=\rho e^{i \theta}$, where $\rho=\sqrt{x^{2}+y^{2}}$ is its length and θ the angle between the vector and the horizontal axis. The fact $x=\rho \cos \theta, y=\rho \sin \theta$ are consistent with Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.

One can convert a complex number from one form to the other by using the Euler's formula:

$$
\begin{gathered}
z=x+i y \quad \Leftrightarrow \quad z=\rho e^{i \theta}, \quad \text { where } \\
x=\rho \cos \theta, \quad y=\rho \sin \theta ; \quad \rho=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

where we often restrict $0 \leq \theta \leq 2 \pi$ or $-\pi \leq \theta \leq \pi$. Otherwise, the conversion from Cartesian to polar coordinates is not unique, θ can differ by an integer multiple of 2π.

Eg 5.4.1 Convert the following complex numbers from one form to the other.

1. $z=3 i$;
2. $z=1$;
3. $z=1+i \sqrt{3}$;
4. $z=-2-2 i$;
5. $z=e^{-i \frac{\pi}{6}}$;
6. $z=5 e^{i \frac{\pi}{4}}$;
7. $z=-5 e^{-i \frac{\pi}{3}}$.

Ans:

1. $z=3 i=3 e^{i \frac{\pi}{2}}$;
2. $z=1=e^{i 0}=1$, (for a positive real number, there is no change!);
3. $z=1+i \sqrt{3}=\sqrt{1^{2}+(\sqrt{3})^{2}} e^{i \tan ^{-1} \frac{\sqrt{3}}{1}}=2 e^{i \frac{\pi}{3}}$;
4. $z=-2-2 i=\sqrt{(-2)^{2}+(-2)^{2}} e^{i \tan ^{-1}\left(\frac{-2}{-2}\right)}=2 \sqrt{2} e^{i \frac{5 \pi}{4}}=2 \sqrt{2} e^{-i \frac{3 \pi}{4}}$;
5. $z=e^{-i \frac{\pi}{6}}=\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-i \frac{1}{2}$;
6. $z=6 e^{i \frac{\pi}{4}}=6 \cos \frac{\pi}{4}+i 6 \sin \frac{\pi}{4}=3 \sqrt{2}+3 \sqrt{2} i=3 \sqrt{2}(1+i)$;
7. $z=-4 e^{-i \frac{\pi}{3}}=(-4)\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right]=(-4)\left[\frac{1}{2}-i \frac{\sqrt{2}}{2}\right]=$ $-2+2 \sqrt{2} i$.

Remark: It is important to know that the collection of all complex numbers of the form $z=e^{i \theta}$ form a circle of radius one (unit circle) in the complex plane centered at the origin. In other words, the equation for a unit circle centered at the origin in complex plane is $z=e^{i \theta}$ (see figure).

Figure 3: The collection of all complex numbers of the form $z=e^{i \theta}$ form a unit circle centered at the origin in the complex plane.

Remark: Rotation of a vector represented by a complex number $z=$ $\rho e^{i \theta}$ counter-clockwise by angle ϕ is achieved by multiplying $e^{i \phi}$ to it:

$$
e^{i \phi} z=e^{i \phi} \rho e^{i \theta}=\rho e^{i(\theta+\phi)}
$$

Remark: The product between $z_{1}=\rho_{1} e^{i \theta_{1}}$ and $z_{2}=\rho_{2} e^{i \theta_{2}}$ yields

$$
z_{1} z_{2}=\rho_{1} e^{i \theta_{1}} \rho_{2} e^{i \theta_{2}}=\left(\rho_{1} \rho_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

which is a vector of length $\rho_{1} \rho_{2}$ and an angle $\theta_{1}+\theta_{2}$.

Eg 5.4.2 Find all roots of $\sqrt[3]{1}$, complex and real.

Ans:

$$
1=e^{0}=e^{i(0)}=e^{(2 \pi n) i}, \quad \text { for any integer } \mathrm{n}
$$

Therefore,

$$
\sqrt[3]{1}=1^{\frac{1}{3}}=\left(e^{(2 \pi n) i}\right)^{\frac{1}{3}}=e^{\frac{2 \pi n}{3} i}, \quad \text { for any integer } \mathrm{n} .
$$

Often, the angle θ for a complex number expressed in form of $e^{\theta i}$ is restricted in the range $0 \leq \theta<2 \pi$.

If so, $\sqrt[3]{1}$ has only three roots in this range: $\sqrt[3]{1}=1, \quad e^{\frac{2 \pi}{3} i}, \quad e^{\frac{4 \pi}{3} i}$.

Figure 4: The cubic roots of number 1 in complex plane.

5.5 Polynomials of degree n must have n roots!

Eg 5.5.1 Find all roots of $z^{2}+2 z+10=0$.

Ans: Notice that

$$
z^{2}+2 z+10=z^{2}+2 z+1+9=(z+1)^{2}+9=0 .
$$

There is no real root! But there are two complex-valued roots forming a pair of complex conjugates.
$(z+1)^{2}+9=0 \quad \Rightarrow \quad(z+1)^{2}=-9 \quad \Rightarrow \quad z+1= \pm \sqrt{-9} \quad \Rightarrow \quad z=-1 \pm 3 i$.

Final remarks:
(a) Any polynomial of degree n can always be factored into the product of n terms in which $z_{i},(i=1, \ldots, n)$ are the n roots.
$P_{n}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=a_{n}\left(z-z_{n}\right)\left(z-z_{n-1}\right) \cdots\left(z-z_{1}\right)$.
(b) Complex roots of a polynomial always occur as a pair of complex conjugates: $z_{ \pm}=a \pm b i$.

