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Main purpose:

To introduce some basic knowledge of complex numbers to students so

that they are prepared to handle complex-valued roots when solving the

characteristic polynomials for eigenvalues of a matrix.

Eg: In high school, students learned that the roots of a quadratic equa-

tion ax2 + bx + c = 0 (a 6= 0) are given by

x1,2 =
−b±

√
b2 − 4ac

2a

where the sign of the discriminant ∆ = b2−4ac determines the following

three outcomes

If


∆ > 0, 2 real roots;

∆ = 0, 1 (repeated) real root;

∆ < 0, no real root.

When complex-valued roots are allowed as in the case when solving

eigenvalues, however, a polynomial of degree n always has n roots

(Gauss’ Fundamental Theorem of Algebra), of which some or all of

them can be identical (repeated). Thus, a quadratic equation always

has 2 roots irrespective of the sign of ∆.
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5.1 Definitions and basic concepts

The imaginary number i:

i ≡
√
−1 ⇐⇒ i2 = −1. (1)

Every imaginary number is expressed as a real-valued multiple of i:

√
−9 =

√
9
√
−1 =

√
9i = 3i.

A complex number:

z = a + bi, (2)

where a, b are real, is the sum of a real and an imaginary number.

The real part of z: Re{z} = a is a real number.

The imaginary part of z: Im{z} = b is a also a real number.
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A complex number represents a point (a, b) in a 2D space, called

the complex plane. Thus, it can be regarded as a 2D vector expressed

in form of a number/scalar. Therefore, there exists a one-to-one corre-

spondence between a 2D vectors and a complex numbers.

−b
z=a−bi

Im{z}

Re{z}

z=a+bi
b

a

Figure 1: A complex number z and its conjugate z̄ in complex space. Horizontal axis contains all real numbers,
vertical axis contains all imaginary numbers.

The complex conjugate:

z̄ = a− bi,

which is obtained by reversing the sign of Im{z}.

Notice that:

Re{z} =
z + z̄

2
= a, Im{z} =

z − z̄
2i

= b.

Therefore, both Re{z} and Im{z} are linear combinations of z and z̄.
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5.2 Basic computations between complex numbers

Addition/subtraction:

If z1 = a1 + b1i, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R), then

z1 ± z2 = (a1 + b1i)± (a2 + b2i) = (a1 ± a2) + (b1 ± b2)i.

Or, real parts plus/minus real parts, imaginary parts plus/minus imag-

inary parts.

Multiplication by a real scalar α:

αz1 = αa1 + αb1i.

Multiplication between complex numbers:

z1z2 = (a1+b1i)(a2+b2i) = a1a2+a1b2i+a2b1i+b1b2i
2 = (a1a2−b1b2)+(a1b2+a2b1)i.

All rules are identical to those of multiplication between real numbers,

just remember that i2 = −1.
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Length/magnitude of a complex number z = a + bi

|z| =
√
zz̄ =

√
(a + bi)(a− bi) =

√
a2 + b2,

which is identical to the length of a 2D vector (a, b).

Division between complex numbers:

z1

z2
=
z1z̄2

z2z̄2
=

(a1 + b1i)(a2 − b2i)

|z2|2
=

(a1a2 + b1b2) + (a2b1 − a1b2)i

a2
2 + b2

2

.

Eg 5.2.1 Given that z1 = 3 + 4i, z2 = 1− 2i, calculate

1. z1 − z2;

2. z1
2 ;

3. |z1|;

4. z2
z1

.

Ans:

1. z1 − z2 = (3− 1) + (4− (−2))i = 2 + 6i;

2. z1
2 = 3

2 + 4
2i = 1.5 + 2i;

3. |z1| =
√
z1z̄1 =

√
32 + 42 =

√
25 = 5;

4. z2
z1

= z2z̄1
z1z̄1

= (1−2i)(3−4i)
52 = −5−10i

25 = −1
5 −

2
5i.
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5.3 Complex-valued exponential and Euler’s formula

Euler’s formula:

eit = cos t + i sin t. (3)

Based on this formula and that e−it = cos(−t)+i sin(−t) = cos t−i sin t:

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
. (4)

Why? Here is a way to gain insight into this formula.

Recall the Taylor series of et:

et =

∞∑
n=0

tn

n!
.

Suppose that this series holds when the exponent is imaginary.

eit =

∞∑
n=0

(it)n

n!
=

∞∑
n even

(it)n

n!
+

∞∑
n odd

(it)n

n!
=

∞∑
m=0

(it)2m

(2m)!
+

∞∑
m=0

(it)2m+1

(2m + 1)!

=

∞∑
m=0

i2mt2m

(2m)!
+

∞∑
m=0

i2m+1t2m+1

(2m + 1)!
=

∞∑
m=0

(i2)mt2m

(2m)!
+

∞∑
m=0

i(i2)mt2m+1

(2m + 1)!
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=

∞∑
m=0

(−1)mt2m

(2m)!
+ i

∞∑
m=0

(−1)mt2m+1

(2m + 1)!
= cos t + i sin t.

Remarks:

• Sine and cosine functions are actually linear combinations of expo-

nential functions with imaginary exponents.

• Similarly, hyperbolic sine and cosine functions are linear combina-

tions of exponential functions with real exponents.

sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.
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5.4 Polar representation of complex numbers

For any complex number z = x + iy ( 6= 0), its length and angle w.r.t.

the horizontal axis are both uniquely defined.

ρ=  
x   +

 y  

θiρ=   ez=x+yi

Im{z}

Re{z}

y

x
θ

2

2

Figure 2: A complex number z = x+ iy can be expressed in the polar form z = ρeiθ, where ρ =
√
x2 + y2 is its

length and θ the angle between the vector and the horizontal axis. The fact x = ρ cos θ, y = ρ sin θ are consistent
with Euler’s formula eiθ = cos θ + i sin θ.

One can convert a complex number from one form to the other by using

the Euler’s formula:

z = x + iy ⇔ z = ρeiθ, where

x = ρ cos θ, y = ρ sin θ; ρ =
√
x2 + y2, θ = tan−1 y

x
;

where we often restrict 0 ≤ θ ≤ 2π or −π ≤ θ ≤ π. Otherwise,

the conversion from Cartesian to polar coordinates is not unique, θ can

differ by an integer multiple of 2π.
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Eg 5.4.1 Convert the following complex numbers from one form to the

other.

1. z = 3i;

2. z = 1;

3. z = 1 + i
√

3;

4. z = −2− 2i;

5. z = e−i
π
6 ;

6. z = 5ei
π
4 ;

7. z = −5e−i
π
3 .

Ans:

1. z = 3i = 3ei
π
2 ;

2. z = 1 = ei0 = 1, (for a positive real number, there is no change!);

3. z = 1 + i
√

3 =
√

12 + (
√

3)2ei tan−1
√

3
1 = 2ei

π
3 ;

4. z = −2− 2i =
√

(−2)2 + (−2)2ei tan−1(−2
−2) = 2

√
2ei

5π
4 = 2

√
2e−i

3π
4 ;

5. z = e−i
π
6 = cos(−π

6) + i sin(−π
6) =

√
3

2 − i
1
2;

6. z = 6ei
π
4 = 6 cos π4 + i6 sin π

4 = 3
√

2 + 3
√

2i = 3
√

2(1 + i);

7. z = −4e−i
π
3 = (−4)

[
cos(−π

3) + i sin(−π
3)
]

= (−4)
[

1
2 − i

√
2

2

]
=

−2 + 2
√

2i.
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Remark: It is important to know that the collection of all complex

numbers of the form z = eiθ form a circle of radius one (unit circle) in

the complex plane centered at the origin. In other words, the equation

for a unit circle centered at the origin in complex plane is z = eiθ (see

figure).

ρ = 1
iz = e

θ

Re{z}

θ

Im{z}

Figure 3: The collection of all complex numbers of the form z = eiθ form a unit circle centered at the origin in
the complex plane.

Remark: Rotation of a vector represented by a complex number z =

ρeiθ counter-clockwise by angle φ is achieved by multiplying eiφ to it:

eiφz = eiφρeiθ = ρei(θ+φ).

Remark: The product between z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2 yields

z1z2 = ρ1e
iθ1ρ2e

iθ2 = (ρ1ρ2)ei(θ1+θ2)

which is a vector of length ρ1ρ2 and an angle θ1 + θ2.
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Eg 5.4.2 Find all roots of 3
√

1, complex and real.

Ans:

1 = e0 = ei(0) = e(2πn)i, for any integer n.

Therefore,

3
√

1 = 1
1
3 =

(
e(2πn)i

)1
3

= e
2πn

3 i, for any integer n.

Often, the angle θ for a complex number expressed in form of eθi is

restricted in the range 0 ≤ θ < 2π.

If so, 3
√

1 has only three roots in this range:
3
√

1 = 1, e
2π
3 i, e

4π
3 i.

Im{z}

3  1  = 1

3  1  = e
2π
3 i

3  1  = e3 i4π

Re{z}

Figure 4: The cubic roots of number 1 in complex plane.
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5.5 Polynomials of degree n must have n roots!

Eg 5.5.1 Find all roots of z2 + 2z + 10 = 0.

Ans: Notice that

z2 + 2z + 10 = z2 + 2z + 1 + 9 = (z + 1)2 + 9 = 0.

There is no real root! But there are two complex-valued roots forming

a pair of complex conjugates.

(z+1)2 +9 = 0 ⇒ (z+1)2 = −9 ⇒ z+1 = ±
√
−9 ⇒ z = −1±3i.

Final remarks:

(a) Any polynomial of degree n can always be factored into the product

of n terms in which zi, (i = 1, . . . , n) are the n roots.

Pn(z) = anz
n+an−1z

n−1+· · ·+a1z+a0 = an(z−zn)(z−zn−1) · · · (z−z1).

(b) Complex roots of a polynomial always occur as a pair of complex

conjugates: z± = a± bi.

13


