Next: About this document ...
Up: intro_html
Previous: The Ising model and
- 1
-
G. E. Andrews.
In G.-C. Rota, editor, The Theory of Partitions, volume 2 of
Encyclopedia of Mathematics and its Applications. Addison-Wesley,
Reading, Massachusetts, 1976.
- 2
-
R. J. Baxter.
Hard hexagons: exact solution.
J. Phys. A: Math. Gen., 13:L61-L70, 1980.
- 3
-
J. Bétréma and J.-G. Penaud.
Animaux et arbres guingois.
Theoret. Comput. Sci., 117:67-89, 1993.
- 4
-
J. Bétréma and J.-G. Penaud.
Modèles avec particules dures, animaux dirigés et séries en
variables partiellement commutatives.
Technical Report 93-18, LaBRI, Université Bordeaux I, 1993.
- 5
-
H. W. J. Blöte and H. J. Hilhorst.
Spiralling self-avoiding walks: an exact solution.
J. Phys. A: Math. Gen., 17:L111-L115, 1984.
- 6
-
M. Bousquet-Mélou.
New enumerative results on two-dimensional directed animals.
Discrete Math., 180:73-106, 1998.
- 7
-
S. R. Broadbent and J. M. Hammersley.
Percolation processes I. Crystals and mazes.
Proc. Cam. Phil. Soc., 53:629-641, 1957.
- 8
-
A. R. Conway, M. Delest, and A. J. Guttmann.
On the number of three choice polygons.
Mathematical and Computer Modelling, 26:51-58, 1997.
- 9
-
A. R. Conway and A. J. Guttmann.
On two-dimensional percolation.
J. Phys. A: Math. Gen., 28:891-904, 1995.
- 10
-
A. R. Conway and A. J. Guttmann.
Hexagonal lattice directed site animals.
In M. T. Batchelor and L. T. Wille, editors, Statistical Physics
on the Eve of the 21st Century, volume 14 of Advances in Statistical
Mechanics, pages 491-504. World Scientific, Singapore, 1999.
- 11
-
P.-G. de Gennes.
Exponents for the excluded volume problem as derived by the Wilson
method.
Phys. Lett., 38A:339-340, 1972.
- 12
-
D. Dhar.
Equivalence of the two-dimensional directed-site animal problem to
Baxter's hard-square lattice-gas model.
Phys. Rev. Lett, 49:959-962, 1982.
- 13
-
D. Dhar.
Exact solution of a directed-site animals-enumeration problem in
three dimensions.
Phys. Rev. Lett., 51:853-856, 1983.
- 14
-
S. W. Golomb.
Checkerboards and polyominoes.
Amer. Math. Monthly, 61:675-682, 1954.
- 15
-
S. W. Golomb.
Polyominoes: Puzzles, Patterns, Problems, and Packings.
Princeton University Press, second edition, 1996.
- 16
-
D. Gouyou-Beauchamps and G. Viennot.
Equivalence of the two-dimensional directed animal problem to a
one-dimensional path problem.
Adv. in Appl. Math., 9:334-357, 1988.
- 17
-
G. Grimmett.
Percolation.
Springer-Verlag, New York, 1989.
- 18
-
A. J. Guttmann.
Asymptotic analysis of coefficients.
In C. Domb and J. Lebowitz, editors, Phase Transitions and
Critical Phenomena, volume 13, pages 1-234. Academic Press, London, 1989.
Programs available from http://www.ms.unimelb.edu.au/tonyg.
- 19
-
A. J. Guttmann.
Indicators of solvability for lattice models.
Discrete Math., 217:167-189, 2000.
- 20
-
A. J. Guttmann and I. G. Enting.
Solvability of some statistical mechanical systems.
Phys. Rev. Lett., 76:344-347, 1996.
- 21
-
A. J. Guttmann, T. Prellberg, and A. L. Owczarek.
On the symmetry classes of planar self-avoiding walks.
J. Phys. A: Math. Gen., 26:6615-6623, 1993.
- 22
-
A. J. Guttmann and N. Wormald.
On the number of spiral self-avoiding walks.
J. Phys. A: Math. Gen., 17:L271-L274, 1984.
- 23
-
Programs developed by B. Salvy, P. Zimmermann, F. Chyzak and colleagues
at INRIA, France.
Available from http://pauillac.inria.fr/algo.
- 24
-
E. Ising.
Beitrag zur Theorie des Ferromagnetismus.
Zeit. Phys., 31:253-258, 1925.
- 25
-
I. Jensen.
Anisotropic series for bond animals, directed bond animals and
lattice trees.
Personal communication with author.
- 26
-
I. Jensen and A. J. Guttmann.
Statistics of lattice animals (polyominoes) and polygons.
J. Phys. A: Math. Gen., 33:L257-L263, 2000.
- 27
-
G. S. Joyce.
An exact formula for the number of spiral self-avoiding walks.
J. Phys. A: Math. Gen., 17:L463-L467, 1984.
- 28
-
G. S. Joyce and R. Brak.
An exact solution for a spiral self-avoiding walk model on the
triangular lattice.
J. Phys. A: Math. Gen., 18:L293-L298, 1985.
- 29
-
D. A. Klarner.
Some results concerning polyominoes.
Fibonacci Quart., 3:9-20, 1965.
- 30
-
D. A. Klarner.
Cell growth problems.
Canad. J. Math., 19:851-863, 1967.
- 31
-
D. A. Klarner and R. L. Rivest.
A procedure for improving the upper bound for the number of
-ominoes.
Canad. J. Math., 25:585-602, 1973.
- 32
-
N. Madras and G. Slade.
The Self-Avoiding Walk.
Birkhäuser, Boston, 1993.
- 33
-
B. Nienhuis.
Exact critical exponents of the models in two dimensions.
Phys. Rev. Lett., 49:1062-1065, 1982.
- 34
-
L. Onsager.
Crystal statistics I. A two-dimensional model with an
order-disorder transition.
Phys. Rev., 65:117-149, 1944.
- 35
-
W. J. C. Orr.
Statistical treatment of polymer solutions at infinite dilution.
Trans. Faraday Soc., 43:12-27, 1947.
- 36
-
J.-G. Penaud.
Une nouvelle bijection pour les animaux dirigés.
In Actes du ème Séminaire Lotharingien de
Combinatoire, Université de Strasbourg, France, 1989.
- 37
-
V. Privman and N. M. Švrakic.
Directed Models of Polymers, Interfaces, and Clusters: Scaling
and Finite-Size Properties, volume 338 of Lecture Notes in Physics.
Springer-Verlag, Berlin, 1989.
- 38
-
D. Stauffer and A. Aharony.
An Introduction to Percolation Theory.
Taylor and Francis, London, 2nd edition, 1992.
- 39
-
G. Szekeres and A. J. Guttmann.
Spiral self-avoiding walks on the triangular lattice.
J. Phys. A: Math. Gen., 20:481-493, 1987.
- 40
-
H. N. V. Temperley.
Combinatorial problems suggested by the statistical mechanics of
domains and of rubber-like molecules.
Phys. Rev., 103:1-16, 1956.
- 41
-
B. L. van der Waerden.
Die lange Reichweite der regelmässigen Atomanordnung in
Mischkristallen.
Zeit. Phys., 118:473-479, 1941.
- 42
-
S. G. Whittington.
The asymptotic form for the number of spiral self-avoiding walks.
J. Phys. A: Math. Gen., 17:L117-L119, 1984.
- 43
-
S. G. Whittington.
Anisotropic spiral self-avoiding walks.
J. Phys. A: Math. Gen., 18:L67-L69, 1985.
Andrew Rechnitzer
2002-12-16