Student Seminar: Number Theory and Automorphic Forms

Organizers: Lior Silberman, Bill Casselman, Julia Gordon.

Contact: lior @ MATX 1112 604-827-3031

Fall 2008: Real-Analytic forms and Eisenstein Series


Meeting Title Speaker Notes & References
1. (2/9) Holomorphic forms Lior Silberman [7]
2. (11/9) Hilbert spaces and self-adjoint operators Bill Casselman [6]
3. (18/9) Hyperbolic geometry Hesam Abbaspour
4. (25/9) Hyperbolic geometry
Maass forms
Lior Silberman
Scott Sitar
5. (2/10) Absolute convergence of Eisenstein series Alia Hamieh [5]
6. (7/10) Compact operators and the resolvent
Analytical continuation of Eisenstein series
Lior Silberman
Jay Heumann
7. (16/10) The analytical continuation (ctd)
Representation Theory of SL_2(R)
Jay Heumann
Julia Gordon
8. (23/10) Representation Theory of SL_2(R), continued Julia Gordon
9. (6/11) Maass forms associated to real quadratic fields
L-functions associated to Maass forms
Hesam Abbaspour
10. (13/11) Hecke operators the Euler product Scott Sitar [1]
11. (20/11) Adeles and adelic groups Jay Heumann
12. (27/11) The adelic perspective Alia Hamieh [1]


Topics Author(s) Title Data
[1] Bump Automorphic forms and representations CSM No. 53. Cambridge University Press, Cambridge, 1997. xiv+574 pp. ISBN: 0-521-55098-X, MR: 1431508
[2] Continuation of E. Series Colin de Verdière Une nouvelle démonstration du prolongement méromorphe des séries d'Eisenstein C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 7, 361–363. MR: 0639175
[3] Maass forms, the space Γ\H Iwaniec Spectral Methods of Automorphic Forms 2nd edition. GSM No. 53. AMS, Providence, RI, 2002. xii+220 pp. ISBN: 0-8218-3160-7, MR: 1942691
[4] Continuation of E. Series Jacquet Note on the analytic continuation of Eisenstein series Proc. Sympos. Pure Math. 61 (1997), 407–412. MR: 1476506
[5] Convergence of E. series Kubota Elementary theory of Eisenstein series Halsten Press, New York, 1973. xi+110 pp. MR: 0429749
[6] Hilbert spaces, Elliptic Regularity, Fourier Analysis Reed and Simon Methods of modern mathematical physics I: Functional analysis 2nd edition. Academic Press, New York, 1980. xv+400 pp. ISBN: 0-12-585050-6, MR: 0751959
[7] Quadratic forms and modular forms Serre A Course in Arithmetic GTM No. 7. Springer-Verlag, New York-Heidelberg, 1973. viii+115 pp. ISBN: 0-38-7900403-0, MR: 0255476

Back to my homepage.
Made with vi Valid HTML 4.01 Strict Valid CSS!

Clarification: the writings on these pages are generally my own creations (to which I own the copyright), and are made available for traditional academic reuse. If you wish to republish substantial portions (including in "derivative works") please ask me for permission. The material is expressly excluded from the terms of UBC Policy 81.

Last modified Friday August 07, 2009