Skip to main content\(\require{cancel}\require{upgreek} \newcommand{\ds}{\displaystyle}
\renewcommand{\textcolor}[2]{{\color{#1}{#2}}}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ \;\mathrm{s.t.}\; }
\newcommand{\so}{ \;\mid\; }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\renewcommand{\neg}{\sim}
\newcommand{\rel}[1][R]{\;\mathcal{#1}\;}
\newcommand{\nrel}[1][R]{\;\cancel{\mathcal{#1}}\;}
\newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\diff}[2]{\dfrac{\mathrm{d}#1}{\mathrm{d}#2}}
\renewcommand{\mod}[1]{\ (\mathrm{mod}\ #1)}
\newcommand{\lcm}{\mathrm{lcm}}
\let\oldepsilon\epsilon
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\ceil}[1]{\left\lceil #1 \right\rceil}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 4.3 Exercises
1.
Use truth tables to determine whether or not the following pairs of statements are logically equivalent.
-
“
\(({\neg} P)\lor Q\)” and “
\(P\Rightarrow Q\)”.
-
“
\(P\Leftrightarrow Q\)” and “
\(({\neg} P)\Leftrightarrow ({\neg} Q)\)”.
-
“
\(P\Rightarrow (Q\lor R)\)” and “
\(P\Rightarrow (({\neg} Q)\Rightarrow R)\)”.
-
“
\((P\lor Q)\Rightarrow R\)” and “
\((P\Rightarrow R)\land(Q\Rightarrow R)\)”.
-
“
\(P\Rightarrow (Q\lor R)\)” and “
\((Q\land R)\Rightarrow P\)”.
2.
-
\(8\) is even and
\(5\) is prime.
-
If
\(n\) is a multiple of
\(4\) and
\(6\text{,}\) then it is a multiple of
\(24\text{.}\)
-
If
\(n\) is not a multiple of
\(10\text{,}\) then it is a multiple of
\(2\) but is not a multiple of
\(5\text{.}\)
-
\(3\leq x\leq 6\text{.}\)
-
A real number
\(x\) is less than
\(-2\) or greater than
\(2\) if its square is greater than
\(4\text{.}\)
-
If a function
\(f\) is differentiable everywhere then whenever
\(x\in\mathbb{R}\) is a local maximum of
\(f\) we have
\(f'(x)=0\text{.}\)
3.
Show that the following pairs of statements are logically equivalent using
Theorem 4.2.3.
-
\(P\iff Q\) and
\((\neg P) \iff (\neg Q)\)
-
\(P\implies(Q\lor R)\) and
\(P\implies((\neg Q) \implies R)\)
-
\((P\lor Q)\implies R\) and
\((P\implies R)\land(Q\implies R)\)