Skip to main content Contents
Prev Up Next \(\require{cancel}\newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\half}{ \frac{1}{2} }
\newcommand{\ds}{\displaystyle}
\newcommand{\ts}{\textstyle}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\lin}{{\text{LIN}}}
\newcommand{\quot}{{\text{QR}}}
\newcommand{\simp}{{\text{SMP}}}
\newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\De}{\Delta}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\Si}{\Sigma}
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\ave}{\mathrm{ave}}
\newcommand{\llt}{\left \lt }
\newcommand{\rgt}{\right \gt }
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\IBP}[7]{
\begin{array}{|c | l | l |}
\hline
\color{red}{\text{Option 1:}}
& u=#2
&\color{red}{\dee{u}=#3 ~ \dee{#1}}
\\
& \dee{v}=#5~\dee{#1}
&\color{red}{v=#7}
\\
\hline
\color{blue}{\text{Option 2:}}
& u=#5
&\color{blue}{\dee{u}=#6 ~ \dee{#1}}
\\
&\dee{v}=#2 \dee{#1}
&\color{blue}{v=#4}
\\
\hline
\end{array}
}
\renewcommand{\textcolor}[2]{{\color{#1}{#2}}}
\newcommand{\trigtri}[4]{
\begin{tikzpicture}
\draw (-.5,0)--(2,0)--(2,1.5)--cycle;
\draw (1.8,0) |- (2,.2);
\draw[double] (0,0) arc(0:30:.5cm);
\draw (0,.2) node[right]{$#1$};
\draw (1,-.5) node{$#2$};
\draw (2,.75) node[right]{$#3$};
\draw (.6,1.1) node[rotate=30]{$#4$};
\end{tikzpicture}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section B.4 Cosine and Sine Laws
Subsection B.4.1 Cosine Law or Law of Cosines
The cosine law says that, if a triangle has sides of length \(a\text{,}\) \(b\) and \(c\) and the angle opposite the side of length \(c\) is \(\gamma\text{,}\) then
\begin{align*}
c^2 &= a^2+b^2 - 2ab\cos\gamma
\end{align*}
Observe that, when \(\gamma=\tfrac{\pi}{2}\text{,}\) this reduces to, (surpise!) Pythagoras’ theorem \(c^2=a^2+b^2\text{.}\) Let’s derive the cosine law.
Consider the triangle on the left. Now draw a perpendicular line from the side of length \(c\) to the opposite corner as shown. This demonstrates that
\begin{align*}
c &= a \cos \beta + b \cos \alpha\\
\end{align*}
Multiply this by \(c\) to get an expression for \(c^2\text{:}\)
\begin{align*}
c^2 &= ac \cos \beta + bc \cos \alpha\\
\end{align*}
Doing similarly for the other corners gives
\begin{align*}
a^2 &= ac \cos \beta + ab \cos \gamma\\
b^2 &= bc \cos \alpha + ab \cos \gamma
\end{align*}
Now combining these:
\begin{align*}
a^2+b^2-c^2 &= (bc-bc) \cos \alpha + (ac-ac)\cos\beta + 2ab \cos \gamma\\
&= 2ab\cos \gamma
\end{align*}
as required.
Subsection B.4.2 Sine Law or Law of Sines
The sine law says that, if a triangle has sides of length \(a, b\) and \(c\) and the angles opposite those sides are \(\alpha\text{,}\) \(\beta\) and \(\gamma\text{,}\) then
\begin{align*}
\frac{a}{\sin \alpha} &= \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.
\end{align*}
This rule is best understood by computing the area of the triangle using the formula
\(A = \frac{1}{2}ab\sin\theta\) of Appendix
A.10 . Doing this three ways gives
\begin{align*}
2A &= bc \sin \alpha\\
2A &= ac \sin \beta\\
2A &= ab \sin \gamma
\end{align*}
Dividing these expressions by \(abc\) gives
\begin{align*}
\frac{2A}{abc} &= \frac{\sin \alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin \gamma}{c}
\end{align*}
as required.