Society for Mathematical Biology nautilus logo

International Conference on Mathematical Biology and

Annual Meeting of The Society for Mathematical Biology,

July 27-30, 2009

University of British Columbia, Vancouver

.

Program

MSA5b
Casey Diekman
University of Michigan
Title Clustering and Temporal Silencing of Electrical Activity in the Suprachiasmatic Nucleus
Abstract Neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus are thought to communicate time of day information through circadian variation of their firing frequency, with low rates during the night and higher rates during the day. Based on simulations using a detailed model of the ionic currents within SCN neurons, we predict that the neural code of the SCN is more complex and that throughout the day clock-containing SCN neurons can transition between firing and quiescent states, including an unusual depolarized rest state. We also simulate networks of 10,000 SCN neurons at a set circadian phase with GABAergic coupling, and observe the formation of clusters of neurons with near synchronous firing. We find that the clustering depends on network properties such as synaptic strength and density. Experimental data supporting these modeling results will also be discussed.
LocationWoodward 5