The number of 2×2 integer matrices having a prescribed integer eigenvaluewith Erick B. Wong Random matrices arise in many mathematical contexts, and it is natural to ask about the properties that such matrices satisfy. If we choose a matrix with integer entries at random, for example, what is the probability that it will have a particular integer as an eigenvalue, or an integer eigenvalue at all? If we choose a matrix with real entries at random, what is the probability that it will have a real eigenvalue in a particular interval? The purpose of this paper is to resolve these questions, once they are made suitably precise, in the setting of 2×2 matrices.
|