Skip to main content Contents
Prev Up Next \(\require{cancel} \newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\half}{ \frac{1}{2} }
\newcommand{\veps}{\varepsilon}
\newcommand{\ds}{\displaystyle}
\newcommand{\ts}{\textstyle}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\lin}{{\text{LIN}}}
\newcommand{\quot}{{\text{QR}}}
\newcommand{\simp}{{\text{SMP}}}
\newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\pdiff}[2]{ \frac{\partial #1}{\partial #2}}
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\newcommand{\difftwo}[2]{ \frac{\mathrm{d^2}#1}{\mathrm{d}{#2}^2}}
\newcommand{\eqf}[1]{{\buildrel \rm #1 \over =}}
\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\De}{\Delta}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\Si}{\Sigma}
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\ave}{\mathrm{ave}}
\newcommand{\llt}{\left \lt }
\newcommand{\rgt}{\right \gt }
\newcommand{\vd}{\mathbf{d}}
\newcommand{\he}{\mathbf{e}}
\newcommand{\vg}{\mathbf{g}}
\newcommand{\vt}{\mathbf{t}}
\newcommand{\vw}{\mathbf{w}}
\def\eqover#1{\ {\buildrel #1 \over =}\ }
\newcommand{\impliesover}[1]{ {\buildrel #1 \over\implies} }
\newcommand{\vr}{\mathbf{r}}
\newcommand{\vR}{\mathbf{R}}
\newcommand{\vs}{\mathbf{s}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\va}{\mathbf{a}}
\newcommand{\vb}{\mathbf{b}}
\newcommand{\vc}{\mathbf{c}}
\newcommand{\ve}{\mathbf{e}}
\newcommand{\vC}{\mathbf{C}}
\newcommand{\vp}{\mathbf{p}}
\newcommand{\vq}{\mathbf{q}}
\newcommand{\vn}{\mathbf{n}}
\newcommand{\vu}{\mathbf{u}}
\newcommand{\vV}{\mathbf{V}}
\newcommand{\vx}{\mathbf{x}}
\newcommand{\vX}{\mathbf{X}}
\newcommand{\vy}{\mathbf{y}}
\newcommand{\vz}{\mathbf{z}}
\newcommand{\vF}{\mathbf{F}}
\newcommand{\vG}{\mathbf{G}}
\newcommand{\vH}{\mathbf{H}}
\newcommand{\vT}{\mathbf{T}}
\newcommand{\vN}{\mathbf{N}}
\newcommand{\vL}{\mathbf{L}}
\newcommand{\vA}{\mathbf{A}}
\newcommand{\vB}{\mathbf{B}}
\newcommand{\vD}{\mathbf{D}}
\newcommand{\vE}{\mathbf{E}}
\newcommand{\vJ}{\mathbf{J}}
\newcommand{\vZero}{\mathbf{0}}
\newcommand{\vPhi}{\mathbf{\Phi}}
\newcommand{\vOmega}{\mathbf{\Omega}}
\newcommand{\vTheta}{\mathbf{\Theta}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\hi}{\hat{\pmb{\imath}}}
\newcommand{\hj}{\hat{\pmb{\jmath}}}
\newcommand{\hk}{\hat{\mathbf{k}}}
\newcommand{\hn}{\hat{\mathbf{n}}}
\newcommand{\hr}{\hat{\mathbf{r}}}
\newcommand{\hvt}{\hat{\mathbf{t}}}
\newcommand{\hN}{\hat{\mathbf{N}}}
\newcommand{\vth}{{\pmb{\theta}}}
\newcommand{\vTh}{{\pmb{\Theta}}}
\newcommand{\vnabla}{ { \mathchoice{\pmb{\nabla}}
{\pmb{\nabla}}
{\pmb{\scriptstyle\nabla}}
{\pmb{\scriptscriptstyle\nabla}} } }
\newcommand{\ha}[1]{\mathbf{\hat e}^{(#1)}}
\newcommand{\bbbc}{\mathbb{C}}
\newcommand{\Om}{\Omega}
\newcommand{\om}{\omega}
\newcommand{\vOm}{\pmb{\Omega}}
\newcommand{\svOm}{\pmb{\scriptsize\Omega}}
\newcommand{\al}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\de}{\delta}
\newcommand{\ga}{\gamma}
\newcommand{\ka}{\kappa}
\newcommand{\la}{\lambda}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\bbbone}{\mathbb{1}}
\DeclareMathOperator{\sgn}{sgn}
\def\tr{\mathop{\rm tr}}
\newcommand{\Atop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}}
\newcommand{\dblInt}{\iint}
\newcommand{\tripInt}{\iiint}
\newcommand{\Set}[2]{\big\{ \ #1\ \big|\ #2\ \big\}}
\newcommand{\rhof}{{\rho_{\!{\scriptscriptstyle f}}}}
\newcommand{\rhob}{{\rho_{{\scriptscriptstyle b}}}}
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section A.5 Table of Taylor Expansions
Let \(n\ge \) be an integer. Then if the function \(f\) has \(n+1\) derivatives on an interval that contains both \(x_0\) and \(x\text{,}\) we have the Taylor expansion
\begin{align*}
f(x)&=f(x_0)+f'(x_0)\,(x-x_0)+\dfrac{1}{2!}f''(x_0)\,(x-x_0)^2+\cdots
+\dfrac{1}{n!}f^{(n)}(x_0)\,(x-x_0)^n\\
&\hskip0.5in
+\dfrac{1}{(n+1)!}f^{(n+1)}(c)\,(x-x_0)^{n+1}\qquad\hbox{for some $c$ between
$x_0$ and $x$}
\end{align*}
The limit as \(n\rightarrow\infty\) gives the Taylor series
\begin{align*}
f(x)&=\sum_{n=0}^\infty\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n
\end{align*}
for \(f\text{.}\) When \(x_0=0\) this is also called the Maclaurin series for \(f\text{.}\) Here are Taylor series expansions of some important functions.
\begin{align*}
e^x&=\sum_{n=0}^\infty \dfrac{1}{n!}x^n
&&\text{for } -\infty \lt x \lt \infty\\
&=1+x+\dfrac{1}{2}x^2+\dfrac{1}{3!}x^3+\cdots+\dfrac{1}{n!}x^n+\cdots\\
\sin x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}
&&\text{for } -\infty \lt x \lt \infty\\
&=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5-\cdots
+\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}+\cdots\\
\cos x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n)!}x^{2n}
&&\text{for } -\infty \lt x \lt \infty\\
&=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4-\cdots
+\dfrac{(-1)^n}{(2n)!}x^{2n}+\cdots\\
\dfrac{1}{1-x}&=\sum_{n=0}^\infty x^n
&&\text{for } -1\le x \lt 1\\
&=1+x+x^2+x^3+\cdots+x^n+\cdots\\
\dfrac{1}{1+x}&=\sum_{n=0}^\infty(-1)^n x^n
&&\text{for } -1 \lt x\le 1\\
&=1-x+x^2-x^3+\cdots+(-1)^nx^n+\cdots\\
\ln(1-x)&=-\sum_{n=1}^\infty\dfrac{1}{n}x^n
&&\text{for } -1\le x \lt 1\\
&=-x-\half x^2-\dfrac{1}{3}x^3-\cdots-\dfrac{1}{n}x^n-\cdots\\
\ln(1+x)&=-\sum_{n=1}^\infty\dfrac{(-1)^n}{n}x^n
&&\text{for } -1 \lt x\le 1\\
&=x-\half x^2+\dfrac{1}{3}x^3-\cdots-\dfrac{(-1)^n}{n}x^n-\cdots\\
(1+x)^p&=1+px+\dfrac{p(p-1)}{2}x^2+\dfrac{p(p-1)(p-2)}{3!}x^3+\cdots\\
&\hskip0.5in+
\dfrac{p(p-1)(p-2)\cdots(p-n+1)}{n!}x^n+\cdots
\end{align*}