First, the partial derivatives of \(w\) at \((1,3,1)\) are
\begin{alignat*}{3}
w_x(1,3,1) &= \left[yz+\frac{1}{x}\right]\bigg|_{(1,3,1)}
&&=3\times 1+\frac{1}{1}&&=4\\
w_y(1,3,1) &= xz\bigg|_{(1,3,1)} &&=1\times 1&&=1\\
w_z(1,3,1) &= \left[xy+\frac{1}{z}\right]\bigg|_{(1,3,1)} &&=1\times 3 +\frac{1}{1} &&=4
\end{alignat*}
so the gradient of \(w\) at \((1,3,1)\) is
\begin{equation*}
\vnabla w(1,3,1) = \llt w_x(1,3,1)\,,\,w_y(1,3,1)\,,\,w_z(1,3,1)\rgt
= \llt 4\,,\,1\,,\,4\rgt
\end{equation*}
and the direction derivative in the direction \(\llt 1\,,\,0\,,\,1\rgt\) is
\begin{align*}
D_{\frac{\llt 1\,,\,0\,,\,1\rgt}{|\llt 1\,,\,0\,,\,1\rgt|}} w(1,3,1)
&= \vnabla w(1,3,1)\cdot
\frac{\llt 1\,,\,0\,,\,1\rgt}{|\llt 1\,,\,0\,,\,1\rgt|}
= \llt 4\,,\,1\,,\,4\rgt\cdot \frac{\llt 1\,,\,0\,,\,1\rgt}{\sqrt{2}}\\
&= \frac{8}{\sqrt{2}}=4\sqrt{2}
\end{align*}
The directional derivative of \(w\) at \((1,3,1)\) in the direction \(\vt\ne\vZero\) is zero if and only if
\begin{equation*}
0 = D_{\frac{\vt}{|\vt|}} w(1,3,1)
= \vnabla w(1,3,1)\cdot\frac{\vt}{|\vt|}
= \llt 4\,,\,1\,,\,4\rgt\cdot \frac{\vt}{|\vt|}
\end{equation*}
which is the case if and only if \(\vt\) is perpendicular to \(\llt 4\,,\,1\,,\,4\rgt\text{.}\) So if we walk in the direction of any vector in the plane, \(4x+y+4z=0\) (which has normal vector \(\llt 4\,,\,1\,,\,4\rgt\)) then the directional derivative is zero.