Define
\begin{equation*}
f(x,y)=\begin{cases}
xy\frac{x^2-y^2}{x^2+y^2} & \text{if } (x,y)\ne (0,0) \\
0 & \text{if } (x,y)=(0,0)
\end{cases}
\end{equation*}
This function is continuous everywhere. Note that \(f(x,0)=0\) for all \(x\) and \(f(0,y)=0\) for all \(y\text{.}\) We now compute the first order partial derivatives. For \((x,y)\ne (0,0)\text{,}\)
\begin{align*}
\pdiff{f}{x}(x,y)
&= {\color{blue}{y\frac{x^2-y^2}{x^2+y^2}}} +xy\frac{2x}{x^2+y^2}
- xy\frac{2x(x^2-y^2)}{{(x^2+y^2)}^2}\\
&\ = {\color{blue}{y\frac{x^2-y^2}{x^2+y^2}}} + xy\frac{4xy^2}{{(x^2+y^2)}^2}\\
\pdiff{f}{y}(x,y)
&= {\color{blue}{x\frac{x^2-y^2}{x^2+y^2}}} -xy\frac{2y}{x^2+y^2}
- xy\frac{2y(x^2-y^2)}{{(x^2+y^2)}^2}\\
&\ = {\color{blue}{x\frac{x^2-y^2}{x^2+y^2}}} - xy\frac{4yx^2}{{(x^2+y^2)}^2}
\end{align*}
For \((x,y)= (0,0)\text{,}\)
\begin{alignat*}{2}
\pdiff{f}{x}(0,0)
&= \left[\diff{}{x}f(x,0)\right]_{x=0}
&= \left[\diff{}{x} 0\right]_{x=0}
&=0\\
\pdiff{f}{y}(0,0)
&= \left[\diff{}{y}f(0,y)\right]_{y=0}
&= \left[\diff{}{y} 0\right]_{y=0}
&=0
\end{alignat*}
By way of summary, the two first order partial derivatives are
\begin{align*}
f_x(x,y)&=\begin{cases}
y\frac{x^2-y^2}{x^2+y^2} + \frac{4x^2y^3}{{(x^2+y^2)}^2}
& \text{if } (x,y)\ne (0,0)\\
0 & \text{if } (x,y)=(0,0)
\end{cases}\\
f_y(x,y)&=\begin{cases}
x\frac{x^2-y^2}{x^2+y^2} - \frac{4x^3y^2}{{(x^2+y^2)}^2}
& \text{if } (x,y)\ne (0,0)\\
0 & \text{if } (x,y)=(0,0)
\end{cases}
\end{align*}
Both \(\pdiff{f}{x}(x,y)\) and \(\pdiff{f}{y}(x,y)\) are continuous. Finally, we compute
\begin{align*}
\frac{\partial^2\ f}{\partial x\partial y}(0,0)
&=\left[\diff{}{x} f_y(x,0)\right]_{x=0}
=\lim_{h\rightarrow 0}\frac{1}{h}\left[f_y(h,0)-f_y(0,0)\right]\\
&=\lim_{h\rightarrow 0}\frac{1}{h}\left[h\frac{h^2-0^2}{h^2+0^2}-0\right]
=1\\
\frac{\partial^2\ f}{\partial y\partial x}(0,0)
&=\left[\diff{}{y} f_x(0,y)\right]_{y=0}
=\lim_{k\rightarrow 0}\frac{1}{k}\left[f_x(0,k)-f_x(0,0)\right]\\
&=\lim_{k\rightarrow 0}\frac{1}{k}\left[k\frac{0^2-k^2}{0^2+k^2}-0\right]
=-1
\end{align*}