Recall that, in the CLP-1 text, we started with the constant approximation, then improved it to the linear approximation by adding in degree one terms, then improved that to the quadratic approximation by adding in degree two terms, and so on. We can do the same thing here. Once again, set
\begin{equation*}
g(t) = f\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\end{equation*}
and recall that
\begin{equation*}
g(0) = f\big(x_0\,,\,y_0\big)\qquad\text{and}\qquad
g(1) = f\big(x_0 + \De x\,,\,y_0+\De y\big)
\end{equation*}
We’ll now see what the quadratic approximation
\begin{equation*}
g(t_0+\De t) \approx g(t_0) +g'(t_0)\,\De t +\tfrac{1}{2} g''(t_0)\,\De t^2
\end{equation*}
and the corresponding exact formula (see (3.4.32) in the CLP-1 text)
\begin{equation*}
g(t_0+\De t) = g(t_0) +g'(t_0)\,\De t +\tfrac{1}{2} g''(t_0+c\De t)\,\De t^2
\qquad\text{for some } 0\le c\le 1
\end{equation*}
tells us about \(f\text{.}\) We have already found, using the chain rule, that
\begin{equation*}
g'(t) = \pdiff{f}{x}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\,\De x
+ \pdiff{f}{y}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\,\De y
\end{equation*}
We now need to evaluate \(g''(t)\text{.}\) Temporarily write \(f_1=\pdiff{f}{x}\) and \(f_2=\pdiff{f}{y}\) so that
\begin{equation*}
g'(t) = f_1\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\,\De x
+ f_2\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\,\De y
\end{equation*}
Then we have, again using the chain rule,
\begin{align*}
&\diff{}{t}\left[f_1\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\right]\\
&=\frac{\partial f_1}{\partial x}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\,\De x
+\frac{\partial f_1}{\partial y}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De y\\
&
=\frac{\partial^2 f}{\partial x^2}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\,\De x
+\frac{\partial^2\ f}{\partial y\partial x}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De y
\tag{$*$}
\end{align*}
and
\begin{align*}
&\diff{}{t}\left[f_2\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)\right]\\
&=\frac{\partial f_2}{\partial x}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\,\De x
+\frac{\partial f_2}{\partial y}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De y\\
&
=\frac{\partial^2\ f}{\partial x\partial y}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De x
+\frac{\partial^2 f}{\partial y^2}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De y
\tag{$**$}
\end{align*}
Adding \(\De x\) times \((*)\) to \(\De y\) times \((**)\) and recalling that \(\frac{\partial^2\ f}{\partial y\partial x}
=\frac{\partial^2\ f}{\partial x\partial y}\text{,}\) gives
\begin{align*}
g''(t) &=
\frac{\partial^2 f}{\partial x^2}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\,\De x^2\\
&\hskip0.5in +2\frac{\partial^2\ f}{\partial x\partial y}
\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big) \,\De x\De y\\
&\hskip1in+ \frac{\partial^2 f}{\partial y^2}\big(x_0+t\,\De x\,,\,y_0+t\,\De y\big)
\,\De y^2
\end{align*}
Now setting \(t_0=0\) and \(\De t=1\text{,}\) the quadratic approximation
\begin{align*}
f\big(x_0 + \De x\,,\,y_0+\De y\big)
&=g(1)\approx g(0) +g'(0) +\tfrac{1}{2} g''(0)
\end{align*}
is