Let
\begin{align*}
\va(t)&= t^2\,\hi + t^4\,\hj + t^6\,\hk\\
\vb(t)&= e^{-t}\,\hi + e^{-3t}\,\hj + e^{-5t}\,\hk\\
\ga(t)&= t^2\\
s(t)&= \sin t
\end{align*}
We are about to compute some derivatives. To make it easier to follow what is going on, we’ll use some colour. When we apply the product rule
\begin{equation*}
\diff{}{t}\big[f(t)\,g(t)\big]
={\color{blue}{f'(t)}}\,g(t) + f(t)\,{\color{blue}{g'(t)}}
\end{equation*}
we’ll use blue to highlight the factors \(f'(t)\) and \(g'(t)\text{.}\) Here we go.
\begin{align*}
\ga(t)\,\vb(t) & = t^2e^{-t}\,\hi + t^2 e^{-3t}\,\hj + t^2 e^{-5t}\,\hk
\end{align*}
gives
\begin{align*}
\diff{}{t}\big[\ga(t)\vb(t)\big]
&=\big[{\color{blue}{2t}} e^{-t}{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}\big]\hi
+\big[{\color{blue}{2t}} e^{-3t}{\color{blue}{-3}}t^2{\color{blue}{e^{-3t}}}\big]\hj
+\big[{\color{blue}{2t}} e^{-5t}{\color{blue}{-5}}t^2{\color{blue}{e^{-5t}}}\big]\hk\\
&={\color{blue}{2t}}\big\{e^{-t}\,\hi + e^{-3t}\,\hj + e^{-5t}\,\hk\big\}
+ t^2{\color{blue}{\big\{-e^{-t}\,\hi -3 e^{-3t}\,\hj -5 e^{-5t}\,\hk\big\}}}\\
&={\color{blue}{\ga'(t)}}\vb(t)+\ga(t){\color{blue}{\vb'(t)}}
\end{align*}
and
\begin{align*}
\va(t)\cdot\vb(t) & = t^2e^{-t} + t^4 e^{-3t} + t^6 e^{-5t}
\end{align*}
gives
\begin{align*}
\diff{}{t}\big[\va(t)\cdot\vb(t)\big]
&=\big[{\color{blue}{2t}} e^{-t}{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}\big]
+\big[{\color{blue}{4t^3}} e^{-3t}{\color{blue}{-3}}t^4{\color{blue}{e^{-3t}}}\big]
+\big[{\color{blue}{6t^5}} e^{-5t}{\color{blue}{-5}}t^6{\color{blue}{e^{-5t}}}\big]\\
&=\big[{\color{blue}{2t}} e^{-t}+{\color{blue}{4t^3}} e^{-3t}+{\color{blue}{6t^5}} e^{-5t}\big]
+\big[{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}
{\color{blue}{-3}}t^4{\color{blue}{e^{-3t}}}
{\color{blue}{-5}}t^6{\color{blue}{e^{-5t}}}\big]\\
&={\color{blue}{\big\{2t\,\hi+4t^3\,\hj+6t^5\,\hk\big\}}}\cdot
\big\{e^{-t}\,\hi + e^{-3t}\,\hj + e^{-5t}\,\hk\big\}\\&\hskip0.5in
+\big\{t^2\,\hi + t^4\,\hj + t^6\,\hk\big\}\cdot
{\color{blue}{\big\{-e^{-t}\,\hi-3e^{-3t}\,\hj-5e^{-5t}\,\hk\big\}}}\\
&={\color{blue}{\va'(t)}}\cdot\vb(t)+\va(t)\cdot{\color{blue}{\vb'(t)}}
\end{align*}
and
\begin{align*}
\va(t)\times\vb(t)
&=\det\left[\begin{matrix}\hi& \hj &\hk\\
t^2 & t^4 & t^6\\
e^{-t} & e^{-3t} & e^{-5t}\end{matrix}\right]\\
&=\hi\big(t^4 e^{-5t}-t^6 e^{-3t})
-\hj(t^2 e^{-5t}- t^6 e^{-t})
+\hk(t^2 e^{-3t}-t^4 e^{-t})
\end{align*}
gives
\begin{align*}
&\diff{}{t}\big[\va(t)\times\vb(t)\big]\\
&=\ \hi\big(\ {\color{blue}{4t^3}} e^{-5t}\ \ -\ {\color{blue}{6t^5}} e^{-3t})
\ -\ \hj(\ {\color{blue}{2t}} e^{-5t}\ -\ {\color{blue}{6t^5}} e^{-t})
+\hk(\ {\color{blue}{2t}} e^{-3t}\ -\ {\color{blue}{4t^3}} e^{-t}) \\&\hskip0.1in
+\hi\big({\color{blue}{-5}}t^4 {\color{blue}{e^{-5t}}}{\color{blue}{+3}}t^6 {\color{blue}{e^{-3t}}})
-\hj({\color{blue}{-5}}t^2 {\color{blue}{e^{-5t}}}{\color{blue}{+}} t^6 {\color{blue}{e^{-t}}})
+\hk({\color{blue}{-3}}t^2 {\color{blue}{e^{-3t}}}{\color{blue}{+}}t^4 {\color{blue}{e^{-t}}})\\
&={\color{blue}{\big\{2t\,\hi+4t^3\,\hj+6t^5\,\hk\big\}}}\times
\big\{e^{-t}\,\hi + e^{-3t}\,\hj + e^{-5t}\,\hk\big\}\\&\hskip0.5in
+\big\{t^2\,\hi + t^4\,\hj + t^6\,\hk\big\}\times
{\color{blue}{\big\{-e^{-t}\,\hi-3e^{-3t}\,\hj-5e^{-5t}\,\hk\big\}}}\\
&={\color{blue}{\va'(t)}}\times\vb(t)+\va(t)\times{\color{blue}{\vb'(t)}}
\end{align*}
and
\begin{align*}
\va\big(s(t)\big)
&=(\sin t)^2\,\hi +(\sin t)^4\,\hj + (\sin t)^6\,\hk\\
\implies \diff{}{t}\big[\va\big(s(t)\big)\big]
&=2(\sin t)\cos t\,\hi +4(\sin t)^3\cos t\,\hj + 6(\sin t)^5\cos t\,\hk\\
&=\big\{2(\sin t)\,\hi +4(\sin t)^3\hj + 6(\sin t)^5\hk\big\}\cos t \\
&=\va'\big(s(t)\big)\,s'(t)
\end{align*}