1.
Prove that there is no integer \(a\) that simultaneously satisfies
\begin{equation*}
a \equiv 2 \mod 6 \qquad \text{and} \qquad
a \equiv 7 \mod 9.
\end{equation*}
For any \(n\in\mathbb{N}\text{,}\) there is some \(a\in \mathbb{Z}\text{,}\) \(a\geq 0\) and \(b\in \mathbb{Z}\) that is odd, so that \(n=2^ab\text{.}\)
Let \(g: U \to \mathbb{R}\) where \(U\subseteq \mathbb{R}\text{.}\) Suppose \(g\) is continuous on \([a,b]\subseteq U\text{,}\) and\begin{equation*} f(a) \geq c \geq f(b) \quad \text{ OR } \quad f(a) \leq c \leq f(b), \end{equation*}then there exists \(x_0\in [a,b]\) such that \(g(x_0) = c\text{.}\)