Remark 8.4.1. A set of results about sets seen earlier.
Let \(A,B\) be sets. Then
-
\((A \subseteq B) \equiv (\forall x\in A, x\in B) \equiv( x\in A \implies x\in B)\text{.}\)
-
\(\displaystyle (A = B) \equiv \left( (A \subseteq B) \land (B \subseteq A) \right) \equiv \left((x \in A) \iff (x \in B) \right)\)
-
\(\displaystyle (x \in A \cap B) \equiv \left( (x\in A) \land (x\in B) \right)\)
-
\(\displaystyle (x \in A \cup B) \equiv \left( (x\in A) \lor (x\in B) \right)\)
-
\(\displaystyle (x \in \bar{A}) \equiv (x \not\in A) \equiv \neg(x \in A)\)
-
\(\displaystyle (x \in A - B) \equiv \left( (x \in A) \land (x \not\in B)\right) \equiv \left( (x \in A) \land \neg(x \in B) \right)\)
