Exercises 5.5 Exercises
2.
3.
Let \(n\in\mathbb{Z}\text{.}\) Prove that if \(5\nmid n\) or \(2\nmid n\text{,}\) then \(10\nmid n\text{.}\)
4.
Let \(n,m \in \mathbb{N}\text{.}\) Prove that if \(n \neq 1\) and \(n \neq 2\text{,}\) then \(n\nmid m\) or \(n \nmid (m+2)\text{.}\)
5.
Let \(n,m\in\mathbb{Z}\text{.}\) Prove that if \(n^2+m^2\) is even, then \(n,m\) have the same parity.
6.
7.
We say that the pair of numbers \(a,b\) are consecutive in the set \(S\) when \(a \lt b\) and there is no number \(c \in S\) so that \(a \lt c \lt b\text{.}\) That is, the number \(b\) is the next number in the set after \(a\text{.}\) For example:
Prove the following statement:
8.
9.
10.
11.
12.
Prove the following statement:
13.
Let \(n\in\mathbb Z\text{.}\) Prove that if \(3\mid (n^2+4n+1)\text{,}\) then \(n\equiv 1\mod 3\text{.}\)
14.
Let \(m\in\mathbb{Z}\text{.}\) Prove that if \(5\nmid m\text{,}\) then \(m^2\equiv 1 \mod{5}\) or \(m^2\equiv -1 \mod{5}\text{.}\)
15.
16.
Prove that if \(n\in\mathbb Z\text{,}\) then the sum \(n^3+(n+1)^3+(n+2)^3\) is divisible by \(9\text{.}\)
17.
18.
Without using the triangle inequality, prove that if \(x\in\mathbb{R}\text{,}\) then \(|x+4|+|x-3|\geq 7\text{.}\)
19.
Let \(x\in\mathbb{R}\text{.}\) Show that if \(|x-1| \lt 1\text{,}\) then \(|x^2-1| \lt 3\text{.}\) You may use the following result without proof:
\begin{equation*}
|ab|=|a|\cdot|b| \text{ for any } a,b\in\mathbb{R}.
\end{equation*}
20.
Let \(x\in\mathbb{R}\text{.}\) Show that if \(|x-2| \lt 1\text{,}\) then \(|2x^2-3x-2| \lt 7\text{.}\) You may use the following result without proof:
\begin{equation*}
|ab|=|a|\cdot|b| \text{ for any } a,b\in\mathbb{R}.
\end{equation*}
21.
Prove the reverse triangle inequality. That is, given \(x, y\in \mathbb{R}\text{,}\) prove
\begin{equation*}
|x-y|\geq \big||x|-|y|\big|.
\end{equation*}
22.
We say that a function \(f\) is decreasing on its domain \(D\) if for all \(x,y\in D\text{,}\) whenever \(x\leq y\text{,}\) we have \(f(x)\geq f(y)\text{.}\) Explain why the following statement is false:
Let \(f:\mathbb{R}-\{0\}\to\mathbb{R}\) be defined by \(f(x)=1/x\text{.}\) Then \(f\) is decreasing.
Rewrite the statement to make it true by changing the domain of the function \(f\text{.}\) Then prove your statement.
