Skip to main content

CLP-4 Vector Calculus

Appendix C Answers to Exercises

1 Curves
1.1 Derivatives, Velocity, Etc.

Exercises

1.1.1.
Answer.
(a) r(y)=a2y2ıı^+yȷȷ^, 0ya
(b) (x(ϕ),y(ϕ))=(asinϕ,acosϕ), π2ϕπ
(c) (x(s),y(s))=(acos(π2sa),asin(π2sa)), 0sπ2a
1.1.2.
Answer.
(1,25), (1/2,0), (0,25).
1.1.3.
Answer.
The curve crosses itself at all points (0,(πn)2) where n is an integer. It passes such a point twice, 2πn time units apart.
1.1.4.
Answer.
(a) (a+aθ,a)
(b)(a+aθ+asinθ,a+acosθ)
1.1.5.
Answer.
z=121y22y4
1.1.6.
Answer.
The particle is moving upwards from t=1 to t=2, and from t=3 onwards. The particle is moving downwards from t=0 to t=1, and from t=2 to t=3.
The particle is moving faster when t=1 than when t=3.
1.1.7.
Answer.
The red vector is r(t+h)r(t). The arclength of the segment indicated by the blue line is the (scalar) s(t+h)s(t).
Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a straight line, with the length of the vector r(t+h)r(t) approaching the scalar s(t+h)s(t). This step is crucial to understanding Lemma 1.1.4.
1.1.8.
Answer.
Velocity is a vector-valued quantity, so it has both a magnitude and a direction. Speed is a scalar — the magnitude of the velocity. It does not include a direction.
1.1.9. (✳).
Answer.
(c)
1.1.10.
Answer.
See the solution.
1.1.11. (✳).
Answer.
(d)
1.1.12.
Answer.
velocity=asintıı^+acostȷȷ^+ck^
speed=a2+c2
acceleration=acostıı^asintȷȷ^
The path is a helix with radius a and with each turn having height 2πc.
1.1.13. (✳).
Answer.
(a) T^(1)=(2,0,1)5
(b) 13[53/28]
1.1.14.
Answer.
2
1.1.15.
Answer.
length=a2+b2T
1.1.16.
Answer.
1
1.1.17. (✳).
Answer.
(a) 203
(b) x(t)=2π2t, y(t)=2πt, z(t)=π33+π2t
1.1.18. (✳).
Answer.
(a) r(t)=(3sint,3cost,4)
(b) 5
1.1.19.
Answer.
(a) x(θ)=3cosθ, y(θ)=3sinθ, z(θ)=6cosθ+9sinθ, 0θ2π
(b) s=02π45+45cos2θ108sinθcosθdθ
1.1.20. (✳).
Answer.
(a) 127(10101)
(b) 227(10101)
1.1.21. (✳).
Answer.
s(t)=t33+t2
1.1.22. (✳).
Answer.
827[(2+94bm)3/2(2+94am)3/2]
1.1.23.
Answer.
(a) r(x)=xıı^+xȷȷ^+23x3/2k^
(b) 21
(c) 6ıı^+3ȷȷ^+6k^
(d) 6ıı^12ȷȷ^+12k^
1.1.24.
Answer.
|t|
1.1.25. (✳).
Answer.
(a) r(u)=u3ıı^+3u2ȷȷ^+6uk^
(b) 7
(c) 2
(d) 1
1.1.26. (✳).
Answer.
(a) r(t)=(π2t2t32)ıı^+(tsint)ȷȷ^+(12e2tt)k^
(b) t=π
(c) π2ıı^+2ȷȷ^+(e2π1)k^
1.1.27. (✳).
Answer.
(a) 21
(b) 6
(c) 2ıı^+4ȷȷ^+4k^
(d) 83(2ıı^+ȷȷ^2k^)
1.1.28.
Answer.
x(t)y(t)y(t)x(t)x2+y2
1.1.29.
Answer.
Volume: 540π
Surface area: 360π
1.1.30.
Answer.
50π9+1400π25.3 cm
1.1.31.
Answer.
r(t)=r0eαt1αv0+g1αteαtα2k^

1.2 Reparametrization

Exercises

1.2.1.
Answer.
t1
1.2.2.
Answer.
(sin(1/2),cos(1/2),3/2)
1.2.3.
Answer.
A
1.2.4. (✳).
Answer.
(a) (34,34,12)
(b) R(s)=(2sin3(s3),2cos3(s3),3sin(s3)cos(s3))
1.2.5. (✳).
Answer.
(a) 2
(b) s2(cos(ln(s2)),sin(ln(s2))) with s>0
1.2.6.
Answer.
(cosz,zsinz,z) for 0z<π/2. The curve is (the first quarter-turn of) a spiral, with width in the x-direction 2, and increasing width in the y-direction. The parameter z is the height, as well as a radian measure for the spiral.
1.2.7.
Answer.
When s13(221),
R(s)=(12[(223s)2/31],13[(223s)2/31]3/2)
and when s>13(221),
R(s)=(12[(3s+222)2/31],13[(3s+222)2/31]3/2)

1.3 Curvature

Exercises

1.3.1.
Answer.
ρ=3, κ=13
1.3.2.
Answer.
T^(t)=(cost,sint), T^(s)=(cos(s/3),sin(s/3)),
N^(t)=(sint,cost), N^(s)=(sin(s/3),cos(s/3))
1.3.3.
Answer.
limtκ(t)=0
1.3.4.
Answer.
dsdt=e2t+9+cos2t
1.3.5.
Answer.
dT^dt=12(sintcost,sint+cost)dT^ds=12s(sin(ln(s/2))cos(ln(s/2))),sin(ln(s/2))+cos(ln(s/2)))
1.3.6.
Answer.
See the solution.
1.3.7.
Answer.
  1. v(t)=(et,2t+1)
  2. a(t)=(et,2)
  3. dsdt=e2t+(2t+1)2
  4. T^(t)=(ete2t+(2t+1)2,2t+1e2t+(2t+1)2)
  5. κ(t)=et|12t|(e2t+(2t+1)2)3/2
1.3.8.
Answer.
κ(t)=12
1.3.9.
Answer.
κmax=ab2, κmin=ba2.
1.3.10. (✳).
Answer.
(a) κ(0)=23/2
(b) (x+2)2+(y3)2=8
1.3.11. (✳).
Answer.
(a)
(b) κ(t)=123/21cost
(c) 4
(d) (xπ)2+(y+2)2=16
1.3.12.
Answer.
κ(s)=πs
1.3.13. (✳).
Answer.
The maximum values occur at (x,y)=±(1/54,1353/4).
The limits limx±κ(x)=0.

1.4 Curves in Three Dimensions

Exercises

1.4.1.
Answer.
B^ points out of the page (towards the reader).
1.4.2.
Answer.
arclength
1.4.3.
Answer.
a(t) and b(t) have negative torsion, c(t) has zero torsion.
1.4.4.
Answer.
See solution.
1.4.5. (✳).
Answer.
(a), (b)
(c) The torsion is zero.
1.4.6. (✳).
Answer.
(a) r(t)=(et+et)ıı^+(etet)ȷȷ^+2k^, r(t)=(etet)ıı^+(et+et)ȷȷ^,
κ(t)=12+e2t+e2t
(b) 2[e1e]
1.4.7.
Answer.
3181
1.4.8.
Answer.
T^(t)=ıı^+tȷȷ^+t2k^1+t2+t4
B^(t)=t2ıı^2tȷȷ^+k^1+4t2+t4
N^(t)=(t+2t3)ıı^+(1t4)ȷȷ^+(2t+t3)k^1+t2+t41+4t2+t4
κ(t)=1+4t2+t4[1+t2+t4]3/2
τ(t)=21+4t2+t4
1.4.9.
Answer.
When c=0, the plane is z=1. When c=1/5, the plane is (1/25)x+3y(30/e)z=10.
1.4.10. (✳).
Answer.
(a) 2x+y+3z=6
(b) κ(t)=21+9t2+9t4[1+4t2+9t4]3/2
1.4.11. (✳).
Answer.
(a) 2
(b) 32ıı^12ȷȷ^+π6k^
(c) B^=122ıı^322ȷȷ^+12k^
1.4.12. (✳).
Answer.
(a) R(t)=(1,0,π2)+t(0,1,2π)
(b) aT(t)=4t1+4t2
1.4.13. (✳).
Answer.
(a) 5t
(b) aT(t)=sintıı^+costȷȷ^+2k^
(c) aN(t)=tcostıı^tsintȷȷ^
(d) κ(t)=15t
1.4.14. (✳).
Answer.
(a) r(θ)=[1+3cosθ]ıı^+3sinθȷȷ^+[106cosθ]k^, 0θ<2π
(b) At (2,0,4), T^=ȷȷ^, N^=ıı^+2k^5, B^=2ıı^+k^5, κ(0)=53
1.4.15. (✳).
Answer.
(a) T^(t)=t2ıı^+2tȷȷ^+k^t2+1
(b) 2(t2+1)2
(c) 4ıı^32ȷȷ^4k^50
1.4.16. (✳).
Answer.
(a) One possible parametrization is r(θ)=cosθıı^+sinθȷȷ^+(1cosθsinθ)k^ with 0θ2π.
(b) κ(θ)=3[2sin(2θ)]3/2
(c) maximum curvature =3 at ıı^2+ȷȷ^2+(12)k^ and ıı^2ȷȷ^2+(1+2)k^ and minimum curvature =13 at ıı^2+ȷȷ^2+k^ and ıı^2ȷȷ^2+k^
1.4.17. (✳).
Answer.
T^(t)=2t2ıı^+2tȷȷ^+k^2t2+1
N^(t)=2tıı^(2t21)ȷȷ^2tk^2t2+1
κ(t)=2t(2t2+1)2
1.4.18. (✳).
Answer.
(a) 13[23/21]
(b) ıı^ȷȷ^2
(c) 12
1.4.19. (✳).
Answer.
(a) v(t)=(1,1,t)
(b) dsdt(t)=2+t2
(c) a(t)=(0,0,1)
(d) κ(t)=2[2+t2]3/2
(e) N^(t)=(t,t,2)2(2+t2)
(f) x+y=3
(g) (2,1,2)
1.4.20. (✳).
Answer.
(a) T^(t)=t2ıı^+2tȷȷ^+k^t2+1
(b) κ(t)=2(t2+1)2
(c) κ(0)=2
(d) N^(0)=ȷȷ^
(e) B^(0)=ıı^
1.4.21. (✳).
Answer.
(a) x=12t, y=1+t, z=1+3t
(b) 3x3yz=1
1.4.22. (✳).
Answer.
(a) 5π22
(b) κ(t)=15t
1.4.23. (✳).
Answer.
(a) 8
(b) T^(1)=12(1,1,0), N^(1)=(0,0,1)
(c) κ(1)=18
1.4.24. (✳).
Answer.
(a) 52
(b) T^(π6)=15(32,332,4), N^(π6)=12(3,1,0), B^(π6)=15(2,23,3)
1.4.25.
Answer.
(a) r(θ)=cosθıı^+sinθȷȷ^+cos(2θ)k^ 0θ<2π
(b) 15
(c) z=2x2y
(d) radius 1/κ(π/4)=5 and centre (22,22,0)
1.4.26. (✳).
Answer.
49(ıı^4ȷȷ^+k^)
1.4.27. (✳).
Answer.
(a) T^(t)=ıı^+tȷȷ^+3tk^1+4t2
(b) N^(t)=4tıı^+ȷȷ^+3k^21+4t2
(c) \textcircled{3}
(d) 3y+z=0
(e) κ(t)=(1+4t2)3/2
(f) The curvature κ(t) achieves its maximum value at r(0)=(0,0,0).
(g) The curvature never achieves a minimum.
(h) ıı^=u2, ȷȷ^=v3w4, k^=3v+w4, r(t)=tu+t2v
The curve (a(t),b(t))=(t,t2) is the curve y=x2. It is “curviest” at the origin, which is consistent with part (f). It becomes flatter and flatter as |t| increases, but never achieves “perfect flatness”, which is consistent with (g).
1.4.28. (✳).
Answer.
See the solution.
1.4.29. (✳).
Answer.
(a) T^=16(0,2,2), N^=139(6,1,2), B^=113(1,2,22), κ=1333=399
(b) (i) dvdt=523
(ii) v=(0,2,1).
1.4.30. (✳).
Answer.
(a) v(t)=(sint,cost,ccost), a(t)=(cost,sint,csint)
(b) v(t)=1+c2cos2t
(c) c2sintcost1+c2cos2t
(d) The curve lies on the plane z=cy.
1.4.31. (✳).
Answer.
(a) 174
(b) 417
(c) (i) 4π
(ii) (16π,4,4π)
(iii) 417π

1.6 Integrating Along a Curve

Exercises

1.6.1.
Answer.
Cds
1.6.2.
Answer.
(a) See the solution.
(b) 8
1.6.3.
Answer.
4213(271)+253(251)
1.6.4.
Answer.
π kg
1.6.5.
Answer.
26
1.6.6.
Answer.
(a) 53/2112
(b) 833/23/2
1.6.7.
Answer.
12ln2
1.6.8. (✳).
Answer.
2e3
1.6.9. (✳).
Answer.
(a) 11+5π2(ıı^πȷȷ^+2πk^)
(b) 115[(1+5π2)3/21]
(c) z=x2+y2
(d)
1.6.10.
Answer.
(41255,9255,4736693)

1.7 Sliding on a Curve
1.7.4 Exercises

1.7.4.1.

Answer.

1.7.4.2.

Answer.
time

1.7.4.3.

Answer.
positive

1.7.4.4.

Answer.
y=Emg — just like a circular culvert (if the culvert is high enough).

1.7.4.5.

Answer.
2940 J

1.7.4.6.

Answer.
at least 59.8 m/s

1.7.4.7.

Answer.
(32+2.352,52+3.92,22+3.136)

1.7.4.8.

Answer.
9.86(100+12)20 m/s

1.7.4.9.

Answer.
|v|>504 kph

1.7.4.10.

Answer.
U=mgdyds

1.7.4.11.

Answer.
(a) M=mgȷȷ^T^
(b) negative
(c) 196031131.6 N

1.7.4.12.

Answer.
(a) yS=Emg
(b) 24(EmgyA)(9+7(yA33)2)3/2=4mg(yA339+7(yA33)2) (or equivalent)
(c) The skateboarder makes it up to the ceiling, but falls off rather than making it all the way around. Ouch.

1.7.4.13.

Answer.
(a), (b) See the solution.
(c) 2[a2+b2gbπ]1/2

1.8 Optional — Polar Coordinates

Exercises

1.8.1.
Answer.
The upper sketch below contains the points, (x1,y1), (x3,y3), (x5,y5), that are on the axes. The lower sketch below contains the points, (x2,y2), (x4,y4), that are not on the axes.
r1=3, θ1=0
r2=2, θ2=π4
r3=1, θ3=π2
r4=2, θ4=3π4
r5=2, θ5=π
1.8.2.
Answer.
(a) (r=2,θ=nπ, n odd integer ) or (r=2,θ=nπ, n even integer )
(b) (r=2,θ=π4+2nπ) or (r=2,θ=5π4+2nπ), with n integer.
(c) (r=2,θ=5π4+2nπ) or (r=2,θ=π4+2nπ), with n integer.
1.8.3.
Answer.
(a) Both e^r(θ) and e^θ(θ) have length 1. The angle between them is π2. The cross product is e^r(θ)×e^θ(θ)=k^.
(b) Here is a sketch of (xi,yi), e^r(θi), e^θ(θi) for i=1,3,5 (the points on the axes)
and here is a sketch (to a different scale) of (xi,yi), e^r(θi), e^θ(θi) for i=2,4 (the points off the axes).
1.8.4. (✳).
Answer.
(a) (E)
(b) (B)
(c) (F)
(d) (C)
(e) (A)
(f) (D)
1.8.5.
Answer.
κ(θ)=|f(θ)2+2f(θ)2f(θ)f(θ)|[f(θ)2+f(θ)2]3/2
1.8.6.
Answer.
κ(θ)=323/2a1cosθ=322ar(θ)

1.9 Optional — Central Forces

Exercises

1.9.1. (✳).
Answer.
(a) See the solutions.
(b) f(r)=0 for all r0.
(c) Any f(r) which is a positive constant times 1r3 works.
1.9.2. (✳).
Answer.
(a) See the solution.
(b) |a(t)|=h2r(t)3

2 Vector Fields
2.1 Definitions and First Examples

Exercises

2.1.1.
Answer.
v(x,y)ıı^{>0 when x>0=0 when x=0<0 when x<0}
and
v(x,y)ȷȷ^{>0 when 2<x<2=0 when x{2,2}<0 when x<2 or x>2}
at least for (x,y) shown in the sketch.
2.1.2.
Answer.
v(x,y)ıı^{>0 when y>x=0 when y=x<0 when y<x}
and
v(x,y)ȷȷ^{>0 when y<x=0 when y=x<0 when y>x}
at least for (x,y) shown in the sketch.
2.1.3.
Answer.
v(x,y)=|y|x2+y2(x,y)
2.1.4.
Answer.
P>0
Q>0
Qx<0
Qy>0
2.1.5.
Answer.
(a) (1.01,1.01)
(b) (0,0)
(c) (0,0)
2.1.6.
Answer.
(0,10)
2.1.7.
Answer.
If your face is at the origin, then v(x,y,z)=αx2+y2+z2(x,y,z) for some positive constant α.
2.1.8.
Answer.
2.1.9.
Answer.
2.1.10.
Answer.
2.1.11.
Answer.
2.1.12.
Answer.
(a)
(b)
(c)
2.1.13.
Answer.
f(x,y)=5G(x,y)(x2+y2)3/2+3G(2x,3y)((x2)2+(y3)2)3/2+7G(4x,y)((x4)2+y2)3/2
2.1.14.
Answer.
a. v(p)=((1p2)123,p4)
b. V(x,y,z)=(x6,y6,z2) or equivalent

2.2 Optional — Field Lines
2.2.2 Exercises

2.2.2.1.

Answer.

2.2.2.2.

Answer.
v(x,y)=(xy,xy)

2.2.2.3. (✳).

Answer.
(a) x22=y22+C
(b)

2.2.2.4. (✳).

Answer.
x=y2, z=ey

2.2.2.5. (✳).

Answer.
The field lines are y=Cx3 with C a nonzero constant, as well as x=0 and y=0.

2.3 Conservative Vector Fields

Exercises

2.3.1.
Answer.
In general, false.
2.3.2.
Answer.
a. C
b. B
c. C
d. B
2.3.3.
Answer.
Let φ be a potential for F. Define ϕ=φ+ax+by+cz. Then ϕ=φ+(a,b,c)=F+(a,b,c).
2.3.4.
Answer.
  1. If F+G is conservative for any particular F and G, then by definition, there exists a potential φ with F+G=φ.
    Since F is conservative, there also exists a potential ψ with F=ψ.
    But now G=(F+G)F=φψ=(φψ). That means the function (φψ) is a potential for G. However, this is impossible: since G is non-conservative, no function with this property exists.
    So it is not possible that F+G is conservative. It must be non-conservative.
  2. Counterexample: if F=G, then F+G=0=c for any constant c.
  3. Since both fields are conservative, they both have potentials, say F=φ and G=ψ. Then F+G=φ+ψ=(φ+ψ). That is, (φ+ψ) is a potential for F+G, so F+G is conservative.
2.3.5. (✳).
Answer.
Yes, F is conservative on D. A potential is φ(x,y)=arctanyx.
2.3.6.
Answer.
φ=12x2+xy12y2
2.3.7.
Answer.
φ=ln|x|xy
2.3.8.
Answer.
None exists: F2z=13x3, while F3y=13x3+1, so F fails the screening test, Theorem 2.3.9.
2.3.9.
Answer.
φ(x,y,z)=12ln(x2+y2+z2)
2.3.10.
Answer.
(a) F is conservative with potential ϕ(x,y,z)=12x2y2+32z2+C for any constant C.
(b) F is not conservative.
2.3.11.
Answer.
(a) A=2, B is arbitrary.
(b) φ(x,y,z)=xe(z2)+By2z3+C for any constant C.
2.3.12.
Answer.
v=mxıı^+yȷȷ^x2+y2
φ=12mln(x2+y2)+C for any constant C
2.3.13.
Answer.
It can never escape the sphere centred at the origin with radius 20.
2.3.14.
Answer.
14
2.3.15.
Answer.
φ=f2(x)+g(y)h(z) is a potential for F, so F is conservative.
2.3.16.
Answer.
The line through the origin in the direction of the vector (2,1,2).

2.4 Line Integrals
2.4.2 Exercises

2.4.2.1.

Answer.
16

2.4.2.2.

Answer.
a. A
b. B
c. A
d. B

2.4.2.3.

Answer.
0

2.4.2.4.

Answer.
5

2.4.2.5. (✳).

Answer.
a=1, b=c=0

2.4.2.6.

Answer.
(a) Not conservative
(b) Not conservative
(c) Not conservative
(d) Conservative

2.4.2.7. (✳).

Answer.
(a) The (largest possible) domain is D={ (x,y,z) | x2+y20 }.
(b) ×F=0 on D
(c) CFdr=4π
(d) F is not conservative.

2.4.2.8.

Answer.
912 for all paths from (1,0,1) to (0,2,3)

2.4.2.9.

Answer.
2(e1)+π22+3π

2.4.2.10.

Answer.
(a) 14
(b) 1

2.4.2.11. (✳).

Answer.
403

2.4.2.12.

Answer.
(a) λ=1
(b) ϕ(x,y,z)=2x3yz2xyz+y2+K, for any constant K
(c) e2+2e2

2.4.2.13. (✳).

Answer.
73

2.4.2.14. (✳).

Answer.
13[1123/2]0.2155

2.4.2.15. (✳).

Answer.
π38+π241

2.4.2.16. (✳).

Answer.
23

2.4.2.17. (✳).

Answer.
The line integral is independent of path because it is of the form CFdr with F being a conservative field. The value of the integral is 1+π2.

2.4.2.18. (✳).

Answer.
12

2.4.2.19. (✳).

Answer.
πeπ

2.4.2.20. (✳).

Answer.
(a) α=1, β=γ
(b) eeβ(e+1)

2.4.2.21. (✳).

Answer.
(a) 0
(b) Yes. In fact F=f with f=sinx+2ycosy+ez.
(c) 4

2.4.2.22. (✳).

Answer.
(a) ×F=0. F is conservative.
(b) CFdr=2π2

2.4.2.23. (✳).

Answer.
(a) a=1, b=3
(b) f(x,y,z)=xyex+yz3+C works for any constant C
(c) πeπ2
(d) πeπ3215

2.4.2.24. (✳).

Answer.
(a) A=2, B=3
(b) φ(x,y,z)=xy2e3z+x2y3 is one allowed scalar potential.
(c) 6+e2[e1]=8e5.2817

2.4.2.25. (✳).

Answer.
(a) a=π, b=3
(b) φ(x,y,z)=x2sin(πy)xez3yez+C for any constant C
(c) 8
(d) 132

2.4.2.26. (✳).

Answer.
(a) f(x,y,z)=yeyz+ycos2x+C works for any constant C
(b) 2eπeπ21

2.4.2.27. (✳).

Answer.
(a) 0.
(b) F is conservative with potential φ(x,y,z)=x2+y2+z2. So the integral is φ(a1,a2,a3)φ(0,0,0)=aa.

2.4.2.28. (✳).

Answer.
(a) ×F=0
(b) πe21

2.4.2.29. (✳).

Answer.
(a), (b) f(x,y)=ysin(x2)+cos(y)+C is a potential for any constant C. Because F has a potential, it is conservative.
(c) 1π2sin(1)

2.4.2.30. (✳).

Answer.
(a) p=2, m=2, n=2, but qR is completely free
(b) 4q

2.4.2.31. (✳).

Answer.
(a) r(t)=tıı^+(1+t22)ȷȷ^+sintk^
(b) r(π/2)=π2ıı^+(1+π28)ȷȷ^+k^
(c) π2812

2.4.2.32.

Answer.
(a) 23[143/21]34.26
(b) sin1+322.3415

2.4.2.33. (✳).

Answer.
2π+13

2.4.2.34. (✳).

Answer.
(a) 18
(b) 3e

2.4.2.35. (✳).

Answer.
(a) r(t)=tıı^+(1+t22)ȷȷ^+sintk^
(b) r1=π2ıı^+(1+π28)ȷȷ^+k^
(c) π2812

2.4.2.36. (✳).

Answer.
(a) -5
(b) One possibility is the path consisting of the line segment from (2,2) to (2,3), followed by the line segment from (2,3) to (1,3), followed by the line segment from (1,3) to (1,1).
Another possibility is the path from (2,2) to (1,1) along the parabola 27x280x+54.

2.4.2.37. (✳).

Answer.
One possibility is the path consisting of the line segment from (0,0) to (0,1), followed by the line segment from (0,1) to (2,1), followed by the line segment from (2,1) to (2,0).
Another possibility is the path tracing out the half ellipse (cost+1,4πsint), with t running from π to 0.

2.4.2.38. (✳).

Answer.
See the solution.

2.4.2.39. (✳).

Answer.
a=4

2.4.2.40. (✳).

Answer.
(a) ×F=[(b+2)xcos(x2z)+(b+2)x3zsin(x2z)]ȷȷ^+(6a)x2e3x2k^
(b) a=6, b=2
(c) f(x,y,z)=xye3x2+sin(x2z)+C for any constant C
(d) 13e3+sin113

2.4.2.41. (✳).

Answer.
(a) 2315=1.53˙
(b) 23[143/21]34.26
(c) sin1+322.3415

2.4.2.42. (✳).

Answer.
(a) A=4, B=2
(b) φ(x,y,z)=x4y2z+yz3+C with C being an arbitrary constant.
(c) 2
(d) 37241.5417
(e) 12

2.4.2.43. (✳).

Answer.
(a) v(t)=(t2,t3,t2)
(b) r(t)=(t33+1,t44+2,t33+3)
(c) κ(t)=2t2(2+t2)3/2
(d) 2T4+T6

2.4.2.44. (✳).

Answer.
(a) 8
(b) 18
(c) 165(351)774.4
(d) (0,0,98)

3 Surface Integrals
3.1 Parametrized Surfaces

Exercises

3.1.1.
Answer.
r(x,y)=xıı^+yȷȷ^+(ex+1+xy)k^
3.1.2. (✳).
Answer.
parabolic bowl
3.1.3. (✳).
Answer.
(a) No
(b) Yes
(c) Yes
(d) Yes
(e) No
3.1.4. (✳).
Answer.
(a) No.
(b) Yes.
(c) No.
(d) Yes.
(e) Yes.
3.1.5. (✳).
Answer.
(a) No
(b) Yes
(c) Yes
3.1.6. (✳).
Answer.
(a) A, F
(b) B, E
(c) G, J
(d) H, L
3.1.7.
Answer.
(a) (x,y,z)=(2+12cosθ,2+12cosθ,4+sinθ), 0θ2π.

3.2 Tangent Planes

Exercises

3.2.1.
Answer.
Yes. The plane z=0 is the tangent plane to both surfaces at (0,0,0).
3.2.2.
Answer.
See the solution.
3.2.3.
Answer.
(xx0,yy0,zz0)=t(fx(x0,y0),fy(x0,y0),1)orx=x0tfx(x0,y0)y=y0tfy(x0,y0)z=f(x0,y0)+t
3.2.4.
Answer.
The normal plane is n(xx0,yy0,zz0)=0, where the normal vector n=F(x0,y0,z0)×G(x0,y0,z0).
3.2.5.
Answer.
Tangent line is
x=x0+t[gy(x0,y0)fy(x0,y0)]y=y0+t[fx(x0,y0)gx(x0,y0)]z=z0+t[fx(x0,y0)gy(x0,y0)fy(x0,y0)gx(x0,y0)]
3.2.6. (✳).
Answer.
2x+y+9z=2
3.2.7. (✳).
Answer.
2x+y+z=6
3.2.8. (✳).
Answer.
z=34x32y+114
3.2.9. (✳).
Answer.
(a) 2ax2ay+z=a2
(b) a=12.
3.2.10. (✳).
Answer.
x+3y2z=1
3.2.11. (✳).
Answer.
y=2x2
3.2.12. (✳).
Answer.
The tangent plane is 825x625yz=85.
The normal line is (x,y,z)=(1,2,45)+t(825,625,1).
3.2.13. (✳).
Answer.
±(1,0,2)
3.2.14. (✳).
Answer.
(12,1,12) and (12,1,12)
3.2.15. (✳).
Answer.
±(12,1,1)
3.2.16. (✳).
Answer.
(a) (1,0,3)
(b) (3,3,1)
(c) r(t)=(1,1,3)+t(3,3,1)
3.2.17. (✳).
Answer.
49.11 (to two decimal places)
3.2.18.
Answer.
The horizontal tangent planes are z=0, z=e1 and z=e1. The largest and smallest values of z are e1 and e1, respectively.

3.3 Surface Integrals
3.3.6 Exercises

3.3.6.1.

Answer.
ab1+tan2θ=absecθ

3.3.6.2.

Answer.
(a) 12a2b2+a2c2+b2c2
(b) See the solution.

3.3.6.3.

Answer.
πah2

3.3.6.4.

Answer.
11615π

3.3.6.5. (✳).

Answer.
π6[(1+4a2)3/21]

3.3.6.6. (✳).

Answer.
52π

3.3.6.7. (✳).

Answer.
415[9382+1]

3.3.6.8. (✳).

Answer.
(a) F(x,y)=1+fx(x,y)2+fy(x,y)2
(b) (i) 02πdθ01dr 2r4r2
(b) (ii) 16π

3.3.6.9.

Answer.
2π

3.3.6.10. (✳).

Answer.
a2[π2]

3.3.6.11.

Answer.
2 π

3.3.6.12.

Answer.
(2π)2Rr

3.3.6.13.

Answer.
(a2,a2,a2)

3.3.6.14.

Answer.
16a2

3.3.6.15. (✳).

Answer.
π2a3a2+b2

3.3.6.16.

Answer.
(a) 4πa2n+3
(b) 3abc
(c) π3

3.3.6.17. (✳).

Answer.
(a) 83
(b) 163

3.3.6.18. (✳).

Answer.
(a) 16
(b) 12

3.3.6.19. (✳).

Answer.
827[(134)3/21]

3.3.6.20. (✳).

Answer.
9π

3.3.6.21. (✳).

Answer.
(a)
r(θ,z)=23(3z)cosθ ıı^+23(3z)sinθ ȷȷ^+zk^0θ<2π,0z3
(b) 1

3.3.6.22. (✳).

Answer.
(0,0,a3)

3.3.6.23. (✳).

Answer.
2π

3.3.6.24. (✳).

Answer.
143

3.3.6.25. (✳).

Answer.
2π4

3.3.6.26. (✳).

Answer.
163π

3.3.6.27. (✳).

Answer.
(0,0,23)

3.3.6.28. (✳).

Answer.
4

3.3.6.29. (✳).

Answer.
8116

3.3.6.30. (✳).

Answer.
(a) r(Y,θ)=eYsinθıı^+Yȷȷ^+eYcosθk^0Y1, 0θ2π
(b) 2π3[(1+e2)3/223/2]
(c) π(1e2)

3.3.6.31. (✳).

Answer.
12π

3.3.6.32. (✳).

Answer.
5 π8

3.3.6.33. (✳).

Answer.
20π

3.3.6.34. (✳).

Answer.
3

3.3.6.35. (✳).

Answer.
2π

3.3.6.36. (✳).

Answer.
2π

3.3.6.37.

Answer.
192π

3.3.6.38. (✳).

Answer.
(a) x+y+z=1+π/4
(b) 2π3[221]

3.3.6.39. (✳).

Answer.
(a) Yes. See the solution for the explanation.
(b) See the solution for the proof.

3.3.6.40. (✳).

Answer.
(a) (i) r(u,v)=(u,v,13(162u4v))k^u0, v0, u+2v8
(a) (ii) r(u,v)=(4cosusinv,4sinusinv,4cosv)0u2π, 0vπ4
(a) (iii) r(u,v)=(u,v,1+u2+v2)u2+v299
or r(u,v)=(ucosv,usinv,1+u2)0v2π, 0u99
(b) 32π[112]

3.3.6.41. (✳).

Answer.
(a) π2
(b) π4+23

3.3.6.42. (✳).

Answer.
56

4 Integral Theorems
4.1 Gradient, Divergence and Curl
4.1.6 Exercises

4.1.6.1. (✳).

Answer.
(a) A
(b) B
(c) C
(d) A
(e) B

4.1.6.2.

Answer.
No.

4.1.6.3.

Answer.
See solution.

4.1.6.4.

Answer.
(a) F=3, ×F=0
(b) F=y2z2+x2, ×F=2yzıı^2xzȷȷ^2xyk^
(c) F=1x2+y2, ×F=0
(d) F=0, ×F=k^x2+y2

4.1.6.5. (✳).

Answer.
(a) 2r
(b) (xexy2x)ıı^+y(1exy)ȷȷ^+zk^

4.1.6.6. (✳).

Answer.
(a) k=3
(b) k=2
(c) k=2

4.1.6.7. (✳).

Answer.
(a) 3
(b) 2r
(c) 2a
(d) 2r

4.1.6.8. (✳).

Answer.
(a) a=3
(b) a=4
(c) a=12

4.1.6.9.

Answer.
(a) F cannot have a vector potential.
(b) Two solutions are A=12(z2y2)xıı^12yz2ȷȷ^ and A=12xz2ıı^+12(x2z2)yȷȷ^.

4.1.6.10. (✳).

Answer.
(a) D={ (x,y,z) | x2+z20 }
(b) ×F=0 on D
(c) F=1 on D
(d) F is not conservative on the domain D of part (a).

4.1.6.11. (✳).

Answer.
(a) α=β=1
(b) Any function of the form g(x,y,z)=xyz+w(z) will work.

4.1.6.12.

Answer.
(a) See the solution
(b) ×(ΩΩ×r)=2ΩΩ(ΩΩ×r)=0
(c) 1095km/hr

4.1.6.13.

Answer.
See the solution.

4.2 The Divergence Theorem
4.2.6 Exercises

4.2.6.1.

Answer.
See the solution.

4.2.6.2.

Answer.
See the solution.

4.2.6.3.

Answer.
(a), (b) 8π3

4.2.6.4.

Answer.
(a), (b) 43πa3

4.2.6.5.

Answer.
(a) 814π
(b) 2|V|
(c) 2|V|+814π

4.2.6.6.

Answer.
(a), (b) 2π

4.2.6.7. (✳).

Answer.
(a) z
(b) 0

4.2.6.8.

Answer.
π

4.2.6.9.

Answer.
[3+3x0y0]V

4.2.6.10. (✳).

Answer.
π

4.2.6.11. (✳).

Answer.
163π

4.2.6.12. (✳).

Answer.
(a) F(x,y,z)=0 except at (x,y,z)=(0,0,0), where F is not defined.
(b) 4π
(c) No.
(d) 4π
(e) 0

4.2.6.13. (✳).

Answer.
(a)
r(θ,φ)=sinφcosθıı^+2sinφsinθȷȷ^+2cosφk^0θ<2π, 0φπ
(b) 16π
(c) 16π, again

4.2.6.14. (✳).

Answer.
40π

4.2.6.15. (✳).

Answer.
24π

4.2.6.16. (✳).

Answer.
π2

4.2.6.17. (✳).

Answer.
32π

4.2.6.18. (✳).

Answer.
323π

4.2.6.19. (✳).

Answer.
3π

4.2.6.20. (✳).

Answer.
263

4.2.6.21. (✳).

Answer.
2π

4.2.6.22.

Answer.
(a) 643π
(b) 1283π

4.2.6.23. (✳).

Answer.
(a) F=0 if (x,y,z)0 and is not defined if (x,y,z)=0.
(b) 4π
(c) 0
(d) The flux integrals S1Fn^dS and S2Fn^dS are different, because the one point, (0,0,0), where F fails to be well-defined and zero, is contained inside S1 but is not contained inside S2.

4.2.6.24. (✳).

Answer.
72

4.2.6.25. (✳).

Answer.
(a) 3
(b) 14π

4.2.6.26. (✳).

Answer.
4π5 35/2

4.2.6.27. (✳).

Answer.
(a) 0
(b) 6252π

4.2.6.28. (✳).

Answer.
4π

4.2.6.29. (✳).

Answer.
π

4.2.6.30. (✳).

Answer.
12π

4.2.6.31. (✳).

Answer.
18815π39.37

4.2.6.32. (✳).

Answer.
5π

4.2.6.33.

Answer.
[π613]a3

4.2.6.34.

Answer.
(a) 82π
(b) 82π
(c) 162π

4.2.6.35.

Answer.
See the solution.

4.2.6.36.

Answer.
See the solution.

4.2.6.37. (✳).

Answer.
(a), (b) 36π

4.2.6.38. (✳).

Answer.
e4

4.2.6.39. (✳).

Answer.
(a) 13(1,1,1)
(b) 27π2
(c) 81π2

4.2.6.40. (✳).

Answer.
(a) F=2+2z
(b) π23653=28756π
(c) Let S be an oriented surface that encloses a solid V and has outward pointing normal. If z¯=92|V|1, where |V| is the volume of V and z¯ is the z-component of the centroid (i.e. centre of mass with constant density) of V, then SFn^dS=9. One surface which obeys this condition is the unit cube (with outward normal) centred on (0,0,112).

4.2.6.41. (✳).

Answer.
(a) 5π8
(b) 20
(c) 18

4.2.6.42. (✳).

Answer.
(a) π4+π(b+d)6
(b) σ1σ3Fn^dS is zero if and only if d=b.
(c) σ1σ3Fn^dS is zero for all a, b, c, d.

4.2.6.43. (✳).

Answer.
(a) 4π
(b) 0.

4.2.6.44. (✳).

Answer.
See the solution.

4.2.6.45. (✳).

Answer.
See the solution.

4.2.6.46. (✳).

Answer.
34

4.2.6.47. (✳).

Answer.
9πa3+9πa2

4.2.6.48. (✳).

Answer.
See the solution.

4.2.6.49. (✳).

Answer.
(a) 0
(b) 152π

4.2.6.50. (✳).

Answer.
30+24π

4.2.6.51. (✳).

Answer.
(a) 643π
(b) 1283π

4.3 Green’s Theorem

Exercises

4.3.1.
Answer.
See the solution.
4.3.2.
Answer.
See the solution.
4.3.3.
Answer.
(a) 1
(b) 1
(c) 0
4.3.4.
Answer.
See the solution.
4.3.5.
Answer.
54
4.3.6.
Answer.
9
4.3.7. (✳).
Answer.
323π
4.3.8. (✳).
Answer.
6
4.3.9. (✳).
Answer.
(a)
(b) 83
4.3.10. (✳).
Answer.
13
4.3.11. (✳).
Answer.
54
4.3.12. (✳).
Answer.
103
4.3.13. (✳).
Answer.
(a) π2
(b) 3π2
(c) No.
4.3.14. (✳).
Answer.
54
4.3.15. (✳).
Answer.
(a) I2=0
(b) I3=π
(c) I4=π
4.3.16. (✳).
Answer.
(a) QxPy=0 except at (0,0) where it is not defined.
(b) 2π
(c) No.
(d) 0
(e) 2π
4.3.17. (✳).
Answer.
(a) π2
(b) π4+23
4.3.18. (✳).
Answer.
3π2
4.3.19. (✳).
Answer.
3π8
4.3.20. (✳).
Answer.
A=2
4.3.21. (✳).
Answer.
π
4.3.22. (✳).
Answer.
C1Fdr=0 and C2Fdr=2π
4.3.23. (✳).
Answer.
(a) 12+112[53/21]1.3484
(b) 34
4.3.24. (✳).
Answer.
(a) The projection of the curve on the xy-plane (i.e. the top view of the curve) is a circle. See the solution for more details.
(b) (i) 0
(b) (ii) 0
4.3.25.
Answer.
6x2+3y2=1

4.4 Stokes’ Theorem
4.4.3 Exercises

4.4.3.1.

Answer.
(a)
(b)
(c)

4.4.3.2.

Answer.
See the solution.

4.4.3.3.

Answer.
See the solution.

4.4.3.4.

Answer.
(a) 2π
(b) 2π

4.4.3.5.

Answer.
π

4.4.3.6. (✳).

Answer.
8π

4.4.3.7. (✳).

Answer.
12π

4.4.3.8. (✳).

Answer.
π

4.4.3.9.

Answer.
8

4.4.3.10.

Answer.
1

4.4.3.11. (✳).

Answer.
4π

4.4.3.12. (✳).

Answer.
(a) 8
(b) 43

4.4.3.13. (✳).

Answer.
(a)
(b) S={ (x,y,z) | x2+y2+z2=4, x0, y0, z0 } with
r(θ,φ)=2cosθsinφ ıı^+2sinθsinφ ȷȷ^+2cosφ k^0θπ2, 0φπ2
and
n^=cosθsinφ ıı^+sinθsinφ ȷȷ^+cosφ k^=12r(θ,φ)
(c) 4π

4.4.3.14. (✳).

Answer.
(a) 128π,
(b) 126π

4.4.3.15. (✳).

Answer.
4π

4.4.3.16. (✳).

Answer.
(a) 8
(b) 43

4.4.3.17. (✳).

Answer.
5π/4

4.4.3.18. (✳).

Answer.
103

4.4.3.19. (✳).

Answer.
2

4.4.3.20. (✳).

Answer.
π

4.4.3.21. (✳).

Answer.
3π4

4.4.3.22. (✳).

Answer.
π3

4.4.3.23. (✳).

Answer.
(a)
(b) CFdr=10

4.4.3.24. (✳).

Answer.
π

4.4.3.25. (✳).

Answer.
24π

4.4.3.26. (✳).

Answer.
23πR2

4.4.3.27.

Answer.
43

4.4.3.28.

Answer.
2π

4.4.3.29.

Answer.
24π

4.4.3.30. (✳).

Answer.
(a) ×F=(12xz)ȷȷ^
(b) 203

4.4.3.31. (✳).

Answer.
(a) 18π
(b) 18π

4.4.3.32. (✳).

Answer.
(a) D={ (x,y,z) | x>0, y>0, z>0 }
(b) The domain D is both connected and simply connected.
(c) ×F=(2x1x)k^
(d) 2ln224
(e) No. F is not conservative.

4.4.3.33. (✳).

Answer.
(a) a=2, b=1
(b) π4

4.4.3.34. (✳).

Answer.
15

4.4.3.35. (✳).

Answer.
12π

4.4.3.36. (✳).

Answer.
Rewrite CEdr as a surface integral. For the details, see the solution.

4.4.3.37. (✳).

Answer.
2π

4.4.3.38. (✳).

Answer.
2π33

4.4.3.39. (✳).

Answer.
(a) One possible parametrization is r(r,θ)=rcosθıı^+rsinθȷȷ^+rk^ with 0r1, 0θπ.
(b) π

4.4.3.40.

Answer.
43π

5 True/False and Other Short Questions
5.2 Exercises

5.2.1. (✳).

Answer.
(a) True
(b) True
(c) True
(d) False
(e) True
(f) That depends. If κ=0, the curve is part of a straight line. If κ>0 it is part of a circle of radius 1κ.
(g) False.
(h) False.
(i) False.

5.2.2. (✳).

Answer.
(a) False
(b) False
(c) False
(d) False
(e) True
(f) True
(g) False
(h) False
(i) False
(j) True

5.2.3. (✳).

Answer.
(a) False.
(b) N^(t), B^(t)
(c) True.
(d) False.
(e) False.
(f) True.

5.2.4. (✳).

Answer.
(a) decreasing
(b) f(x) is D
(c) r(θ)=cosθıı^+sinθk^+sinθcosθȷȷ^, 0θ<2π
(d) We want parametrisation (d) with domain |u|2, 0v5.
(e) One possible answer is r(t)=tıı^, 0t1.
(f) C=6
(g) { (a,b,c,d) | a,b,c,d all real and b=c }
(h) 2
(i) (1) True
(2) False
(3) False
(4) False
(5) False
(j) Any vector field whose divergence is 1 everywhere will work. One such vector field is F=xıı^.
(k) negative

5.2.5. (✳).

Answer.
(a) false
(b) false
(c) true
(d) false
(e) true, assuming that the second derivatives of the vector field exist and are continuous.
(f) silly, but true
(g) true
(h) false
(i) false
(j) false

5.2.6. (✳).

Answer.
(a) False
(b) False
(c) True
(d) True
(e) True
(f) True
(g) True
(h) False

5.2.7. (✳).

Answer.
(a) Py<0
(b) Qx>0
(c) ×F is in the direction of +k^ at A
(d) C1Fdr>0
(e) C2Fdr<0
(f) F is not conservative

5.2.8. (✳).

Answer.
(a) False
(b) True
(c) True
(d) False
(e) True
(f) False
(g) False
(h) False
(i) True
(j) True

5.2.9. (✳).

Answer.
(a) True
(b) False
(c) True
(d) False
(e) False
(f) True
(g) True
(h) False
(i) False
(j) True

5.2.10. (✳).

Answer.
(a) False.
(b) False.
(c) True.
(d) False.
(e) True.
(f) False.
(g) False.
(h) True.
(i) False.

5.2.11. (✳).

Answer.
(a) True
(b) False
(c) True
(d) False
(e) True
(f) True
(g) True
(h) False
(i) False
(j) True

5.2.12. (✳).

Answer.
(b)

5.2.13. (✳).

Answer.
(a) False.
(b) False.
(c) False.
(d) True.
(e) False.
(f) True.
(g) False.
(h) False.
(i) True.
(j) False.

5.2.14. (✳).

Answer.
(a) True
(b) False
(c) True, assuming that r(t) is not indentically 0.
(d) False
(e) False

5.2.15. (✳).

Answer.
(a) 2xy+eysinx+xexz
(b) y3ıı^zȷȷ^
(c) (iii)
(d) False.

5.2.16. (✳).

Answer.
(a) True
(b) True
(c) True
(d) False
(e) True
(f) True
(g) True

5.2.17. (✳).

Answer.
(a) True
(b) False

5.2.18. (✳).

Answer.
(a) True
(b) False

5.2.19. (✳).

Answer.
(a), (b), (c) See the solution.
(d) Yes
(d) No

5.2.20. (✳).

Answer.
(a) yes
(b) no
(c) no
(d) yes

5.2.21. (✳).

Answer.
(a) True
(b) True
(c) False

5.2.22. (✳).

Answer.
(a), (c) See the solution.
(b) 8πb2