Skip to main content
CLP-4 Vector Calculus
Joel Feldman, Andrew Rechnitzer, Elyse Yeager
Contents
Search Book
close
Search Results:
No results.
Prev
Up
Next
Front Matter
Colophon
Preface
Feedback about the text
1
Curves
1.1
Derivatives, Velocity, Etc.
1.1
Exercises
1.2
Reparametrization
1.2
Exercises
1.3
Curvature
1.3
Exercises
1.4
Curves in Three Dimensions
1.4
Exercises
1.5
A Compendium of Curve Formula
1.6
Integrating Along a Curve
1.6
Exercises
1.7
Sliding on a Curve
1.7.1
The Sliding Bead
1.7.2
The Skier
1.7.3
The Skate Boarder
1.7.4
Exercises
1.8
Optional — Polar Coordinates
1.8
Exercises
1.9
Optional — Central Forces
1.9
Exercises
1.10
Optional — Planetary Motion
1.11
Optional — The Astroid
1.12
Optional — Parametrizing Circles
2
Vector Fields
2.1
Definitions and First Examples
2.1
Exercises
2.2
Optional — Field Lines
2.2.1
More about
r
′
(
t
)
×
v
(
r
(
t
)
)
=
0
2.2.2
Exercises
2.3
Conservative Vector Fields
2.3
Exercises
2.4
Line Integrals
2.4.1
Path Independence
2.4.2
Exercises
2.5
Optional — The Pendulum
3
Surface Integrals
3.1
Parametrized Surfaces
3.1
Exercises
3.2
Tangent Planes
3.2
Exercises
3.3
Surface Integrals
3.3.1
Parametrized Surfaces
3.3.2
Graphs
3.3.3
Surfaces Given by Implicit Equations
3.3.4
Examples of
∬
S
ρ
d
S
3.3.5
Optional — Dropping Higher Order Terms in
d
u
,
d
v
3.3.6
Exercises
3.4
Interpretation of Flux Integrals
3.4.1
Examples of Flux Integrals
3.5
Orientation of Surfaces
4
Integral Theorems
4.1
Gradient, Divergence and Curl
4.1.1
Vector Identities
4.1.2
Vector Potentials
4.1.3
Interpretation of the Gradient
4.1.4
Interpretation of the Divergence
4.1.5
Interpretation of the Curl
4.1.6
Exercises
4.2
The Divergence Theorem
4.2.1
Optional — An Application of the Divergence Theorem — the Heat Equation
4.2.1.1
Derivation of the Heat Equation
4.2.1.2
An Application of the Heat Equation
4.2.2
Variations of the Divergence Theorem
4.2.3
An Application of the Divergence Theorem — Buoyancy
4.2.4
Optional — Torque
4.2.5
Optional — Solving Poisson’s Equation
4.2.6
Exercises
4.3
Green’s Theorem
4.3
Exercises
4.4
Stokes’ Theorem
4.4.1
The Interpretation of Div and Curl Revisited
4.4.1.1
Divergence
4.4.1.2
Curl
4.4.2
Optional — An Application of Stokes’ Theorem — Faraday’s Law
4.4.3
Exercises
4.5
Optional — Which Vector Fields Obey
∇
∇
×
F
=
0
4.6
Really Optional — More Interpretation of Div and Curl
4.7
Optional — A Generalized Stokes’ Theorem
5
True/False and Other Short Questions
5.1
True/False and Other Short Questions
5.2
Exercises
Appendices
A
Appendices
A.1
Trigonometry
A.1.1
Trigonometry — Graphs
A.1.2
Trigonometry — Special Triangles
A.1.3
Trigonometry — Simple Identities
A.1.4
Trigonometry — Add and Subtract Angles
A.1.5
Inverse Trigonometric Functions
A.2
Powers and Logarithms
A.2.1
Powers
A.2.2
Logarithms
A.3
Table of Derivatives
A.4
Table of Integrals
A.5
Table of Taylor Expansions
A.6
3d Coordinate Systems
A.6.1
Cartesian Coordinates
A.6.2
Cylindrical Coordinates
A.6.3
Spherical Coordinates
A.7
ISO Coordinate System Notation
A.7.1
Polar Coordinates
A.7.2
Cylindrical Coordinates
A.7.3
Spherical Coordinates
A.8
Conic Sections and Quadric Surfaces
A.9
Review of Linear Ordinary Differential Equations
B
Hints for Exercises
C
Answers to Exercises
D
Solutions to Exercises
🔗
Section
A.3
Table of Derivatives
🔗
Throughout this table,
a
and
b
are constants, independent of
.
x
.
F
(
x
)
F
′
(
x
)
=
d
F
d
x
a
f
(
x
)
+
b
g
(
x
)
a
f
′
(
x
)
+
b
g
′
(
x
)
f
(
x
)
+
g
(
x
)
f
′
(
x
)
+
g
′
(
x
)
f
(
x
)
−
g
(
x
)
f
′
(
x
)
−
g
′
(
x
)
a
f
(
x
)
a
f
′
(
x
)
f
(
x
)
g
(
x
)
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
f
(
x
)
g
(
x
)
h
(
x
)
f
′
(
x
)
g
(
x
)
h
(
x
)
+
f
(
x
)
g
′
(
x
)
h
(
x
)
+
f
(
x
)
g
(
x
)
h
′
(
x
)
f
(
x
)
g
(
x
)
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
g
(
x
)
2
1
g
(
x
)
−
g
′
(
x
)
g
(
x
)
2
f
(
g
(
x
)
)
f
′
(
g
(
x
)
)
g
′
(
x
)
F
(
x
)
F
′
(
x
)
=
d
F
d
x
a
0
x
a
a
x
a
−
1
g
(
x
)
a
a
g
(
x
)
a
−
1
g
′
(
x
)
sin
x
cos
x
sin
g
(
x
)
g
′
(
x
)
cos
g
(
x
)
cos
x
−
sin
x
cos
g
(
x
)
−
g
′
(
x
)
sin
g
(
x
)
tan
x
sec
2
x
csc
x
−
csc
x
cot
x
sec
x
sec
x
tan
x
cot
x
−
csc
2
x
e
x
e
x
e
g
(
x
)
g
′
(
x
)
e
g
(
x
)
a
x
(
ln
a
)
a
x
F
(
x
)
F
′
(
x
)
=
d
F
d
x
ln
x
1
x
ln
g
(
x
)
g
′
(
x
)
g
(
x
)
log
a
x
1
x
ln
a
arcsin
x
1
1
−
x
2
arcsin
g
(
x
)
g
′
(
x
)
1
−
g
(
x
)
2
arccos
x
−
1
1
−
x
2
arctan
x
1
1
+
x
2
arctan
g
(
x
)
g
′
(
x
)
1
+
g
(
x
)
2
arccsc
x
−
1
|
x
|
x
2
−
1
arcsec
x
1
|
x
|
x
2
−
1
arccot
x
−
1
1
+
x
2