By translating our coordinate system, it suffices to consider \(\vr_0=(x_0,y_0,z_0) = (0,0,0)\text{.}\) Then
\begin{gather*}
S_\veps = \Set{(x,y,z)}{|(x,y,z)|=\veps}\qquad
\hn(x,y,z) = \frac{1}{\veps}(x,y,z)
\end{gather*}
We expand \(\vv(x,y,z)\) in a Taylor expansion in powers of \(x\text{,}\) \(y\text{,}\) and \(z\text{,}\) to first order, with second order error term.
\begin{gather*}
\vv(x,y,z) = \vA + \vB\,x +\vC\,y +\vD\, z +\vR(x,y,z)
\end{gather*}
where
\begin{gather*}
\vA=\vv(0,0,0) \qquad
\vB=\frac{\partial \vv}{\partial x}(0,0,0) \qquad
\vC=\frac{\partial \vv}{\partial y}(0,0,0) \qquad
\vD=\frac{\partial \vv}{\partial z}(0,0,0)
\end{gather*}
and the error term \(\vR(x,y,z)\) is bounded by a constant times \(x^2+y^2+z^2\text{.}\) In particular there is a constant \(K\) so that, on \(S_\veps\text{,}\)
\begin{equation*}
|\vR(x,y,z)|\le K\veps^2
\end{equation*}
So
\begin{align*}
&\dblInt_{S_\veps}\vv(x,y,z)\cdot\hn(x,y,z)\,\dee{S}\\
&\hskip1in= \frac{1}{\veps} \dblInt_{S_\veps}\big(
\vA + \vB\,x +\vC\,y +\vD\, z +\vR(x,y,z)
\big)\cdot (x,y,z)\,\dee{S}
\end{align*}
Multiply out the dot product so that the integrand becomes
\begin{alignat*}{3}
&\phantom{+}\ \vA\cdot\hi\,x
&&+\ \vA\cdot\hj\,y
&&+\vA\cdot\hk\,z\\
&+\vB\cdot\hi\,x^2
&&+\ \vB\cdot\hj\,xy
&&+\vB\cdot\hk\,xz\\
&+\vC\cdot\hi\,xy
&&+\ \vC\cdot\hj\,y^2
&&+\vC\cdot\hk\,yz\\
&+\vD\cdot\hi\,xz\
&&+\ \vD\cdot\hj\,yz
&&+\vD\cdot\hk\,z^2\\
&+\vR(x,y,z)\cdot (x,y,z)
\end{alignat*}
That’s a lot of terms. But most of them integrate to zero, simply because the integral of an odd function over an even domain is zero. Because \(S_\veps\) is invariant under \(x\rightarrow -x\) and under \(y\rightarrow -y\) and under \(z\rightarrow -z\) we have
\begin{gather*}
\dblInt_{S_\veps}\!\! x\,\dee{S}
=\dblInt_{S_\veps}\!\! y\,\dee{S}
=\dblInt_{S_\veps}\!\! z\,\dee{S}
=\dblInt_{S_\veps}\!\! xy\,\dee{S}
=\dblInt_{S_\veps}\!\! xz\,\dee{S}
=\dblInt_{S_\veps}\!\! yz\,\dee{S}
=0
\end{gather*}
which is a relief. We are now left with
\begin{align*}
\dblInt_{S_\veps}\vv(x,y,z)\cdot\hn(x,y,z)\,\dee{S}
&= \frac{1}{\veps} \dblInt_{S_\veps}\big(
\vB\cdot\hi\,x^2 +\vC\cdot\hj\,y^2 +\vD\cdot\hk\, z^2
\big)\,\dee{S}\\
&\hskip1in
+\frac{1}{\veps} \dblInt_{S_\veps}\vR(x,y,z)\cdot (x,y,z)\,\dee{S}
\end{align*}
As well \(S_\veps\) is invariant under the interchange of \(x\) and \(y\) and also under the interchange of \(x\) and \(z\text{.}\) Consequently
\begin{align*}
\dblInt_{S_\veps} x^2\,\dee{S}
&=\dblInt_{S_\veps} y^2\,\dee{S}
=\dblInt_{S_\veps} z^2\,\dee{S}
=\frac{1}{3}\dblInt_{S_\veps}\big[x^2+y^2+ z^2\big]\,\dee{S}\\
&=\frac{1}{3}\dblInt_{S_\veps}\veps^2\,\dee{S}
\qquad\text{since $x^2+y^2+z^2=\veps^2$ on } S_\veps\\
&=\frac{4}{3}\pi\veps^4
\end{align*}
since the surface area of the sphere \(S_\veps\) is \(4\pi\veps^2\text{.}\) So far, we have
\begin{align*}
&\dblInt_{S_\veps}\vv(x,y,z)\cdot\hn(x,y,z)\,\dee{S}
= \frac{4}{3}\pi\veps^3 \big(\vB\cdot\hi +\vC\cdot\hj +\vD\cdot\hk\big)\\
&\hskip2in+\frac{1}{\veps} \dblInt_{S_\veps}\vR(x,y,z)\cdot (x,y,z)\,\dee{S}\\
&\hskip0.75in= \frac{4}{3}\pi\veps^3 \vnabla\cdot\vv(\vZero)
+\frac{1}{\veps} \dblInt_{S_\veps}\vR(x,y,z)\cdot (x,y,z)\,\dee{S}\\
&\hskip2in\text{(review the definitions of } \vB, \vC, \vD)
\end{align*}
which implies
\begin{align*}
&\lim_{\veps\rightarrow 0}
\frac{1}{\frac{4}{3}\pi\veps^3}
\dblInt_{S_\veps}\vv(x,y,z)\cdot\hn(x,y,z)\,\dee{S}\\
&\hskip1in= \vnabla\cdot\vv(\vZero)
+\lim_{\veps\rightarrow 0}
\frac{3}{4\pi\veps^4}
\dblInt_{S_\veps}\vR(x,y,z)\cdot (x,y,z)\,\dee{S}
\end{align*}
Finally, it suffices to recall that \(|\vR(x,y,z)|\le K\veps^2\) and, on \(S_\veps\text{,}\) \(|(x,y,z)|=\veps\text{,}\) so that
\begin{align*}
\frac{3}{4\pi\veps^4}\bigg|
\dblInt_{S_\veps}\vR(x,y,z)\cdot (x,y,z)\,\dee{S} \bigg|
&\le \frac{3}{4\pi\veps^4}
\dblInt_{S_\veps}|\vR(x,y,z)|\,|(x,y,z)|\,\dee{S}\\
&\le \frac{3}{4\pi\veps^4}
\dblInt_{S_\veps}K\veps^3\,\dee{S}
= \frac{3}{4\pi\veps^4} \ K\veps^3\,\big(4\pi \veps^2)\\
&= 3K\veps
\end{align*}
converges to zero as \(\veps\rightarrow 0\text{.}\) So we are left with the desired result.