We start by parametrizing the surface, which is half of an ellipsoid. By way of motivation for the parametrization, recall that spherical coordinates, with \(\rho=1\text{,}\) provide a natural way to parametrize the sphere \(x^2+y^2+z^2=1\text{.}\) Namely \(x=\cos\theta\sin\varphi\text{,}\) \(y=\sin\theta\sin\varphi\text{,}\) \(z= \cos\varphi\text{.}\) The reason that these spherical coordinates work is that the trig identity \(\cos^2\alpha+\sin^2\alpha=1\) implies
\begin{equation*}
x^2+y^2 = \cos^2\theta\sin^2\varphi + \sin^2\theta\sin^2\varphi
=\sin^2\varphi
\end{equation*}
and then
\begin{equation*}
\big(x^2+y^2\big) + z^2 = \sin^2\varphi +\cos^2\varphi = 1
\end{equation*}
The equation of our ellipsoid is
\begin{equation*}
\Big(\frac{x}{2}\Big)^2 + \Big(\frac{y}{3}\Big)^2 + z^2 =1
\end{equation*}
so we can parametrize the ellipsoid by replacing \(x\) with \(\frac{x}{2}\) and \(y\) with \(\frac{y}{3}\) in our parametrization of the sphere. That is, we choose the parametrization
\begin{align*}
x(\theta,\varphi)&=2\cos\theta\sin\varphi\\
y(\theta,\varphi)&=3\sin\theta\sin\varphi\\
z(\theta,\varphi)&=\cos\varphi
\end{align*}
with \((\theta,\varphi)\) running over \(0\le\theta\le 2\pi,\ 0\le\varphi\le\pi/2\text{.}\) Note that
\begin{equation*}
\frac{1}{4}x(\theta,\varphi)^2+\frac{1}{9}y(\theta,\varphi)^2
+z(\theta,\varphi)^2=1
\end{equation*}
as desired.
\begin{align*}
\Big(\frac{\partial x}{\partial\theta}\,,\,\frac{\partial y}{\partial\theta}
\,,\, \frac{\partial z}{\partial\theta}\Big)
&=(-2\sin\theta\sin\varphi\,,\,3\cos\theta\sin\varphi\,,\,0)\\
\Big(\frac{\partial x}{\partial\varphi}\,,\,\frac{\partial y}{\partial\varphi}\,,\,
\frac{\partial z}{\partial\varphi}\Big)
&=(2\cos\theta\cos\varphi\,,\,3\sin\theta\cos\varphi\,,\,-\sin\varphi)\\
\hn\,\dee{S}&=
-\Big(\frac{\partial x}{\partial\theta}\,,\,\frac{\partial y}{\partial\theta}
\,,\, \frac{\partial z}{\partial\theta}\Big)
\times\Big(\frac{\partial x}{\partial\varphi}\,,\,\frac{\partial y}{\partial\varphi}
\,,\,\frac{\partial z}{\partial\varphi}\Big)\ \dee{\theta} \dee{\varphi}\\
&=-(-3\cos\theta\sin^2\varphi,-2\sin\theta\sin^2\varphi,-6\sin\varphi\cos\varphi)\dee{\theta} \dee{\varphi}
\end{align*}
The extra minus sign in \(\hn\,\dee{S}\) was put there to make the \(z\) component of \(\hn\) positive. (The problem specified that \(\hn\) is to be upward unit normal.) As
\begin{align*}
&\vF\big(x(\theta,\varphi)\,,\,y(\theta,\varphi)\,,\,z(\theta,\varphi)\big)\\
&\hskip0.5in=2^4\cos^4\theta\sin^4\varphi\ \hi
+2\times 3^2\sin^2\theta\sin^2\varphi\ \hj+\cos\varphi\ \hk
\end{align*}
we have
\begin{align*}
\vF\cdot\hn\,\dee{S}
&=\Big[3\times 2^4\cos^5\theta\sin^6\varphi\!+\!2\times 2 \times 3^2
\sin^3\theta\sin^4\varphi\!+\!6\sin\varphi\cos^2\varphi\Big]\,\dee{\theta}\dee{\varphi}
\end{align*}
and the desired integral
\begin{align*}
\dblInt_S\vF\cdot\hn\ \dee{S}
&=\int_0^{\frac{\pi}{2}}\!\!\dee{\varphi}\int_0^{2\pi}\dee{\theta}\
\Big[3\times 2^4\cos^5\theta\sin^6\varphi+2\times 2\times 3^2
\sin^3\theta\sin^4\varphi\\
&\hskip3in+6\sin\varphi\cos^2\varphi\Big]
\end{align*}
Since \(\ \int_0^{2\pi} \cos^m\theta\,\dee{\theta}
=\int_0^{2\pi} \sin^m\theta\,\dee{\theta}=0\ \) for all odd natural numbers \(m\text{,}\)
\begin{align*}
\dblInt_S \vF\cdot\hn\, \dee{S}
&=\int_0^{\pi/2}\hskip-8pt \dee{\varphi}\int_0^{2\pi}\hskip-6pt\dee{\theta}\
6\sin\varphi\cos^2\varphi
=12\pi\int_0^{\pi/2}\hskip-8pt \dee{\varphi}\ \sin\varphi\cos^2\varphi\\
&=12\pi\Big[-\frac{1}{3}\cos^3\varphi\Big]_0^{\pi/2}
=4\pi
\end{align*}
The integral was evaluated by guessing (and checking) that \(-\frac{1}{3}\cos^3\varphi\) is an antiderivative of \(\sin\varphi\cos^2\varphi\text{.}\) It can also be done by substituting \(u=\cos\varphi\text{,}\) \(\dee{u}=-\sin\varphi\,\dee{\varphi}\text{.}\)