Skip to main content Contents
Prev Up Next \(\require{cancel}\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\es}{ {\varnothing}}
\newcommand{\ds}{ \displaystyle }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\newcommand{\pdiff}[2]{ \frac{\partial #1}{\partial #2}}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\De}{\Delta}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\veps}{\varepsilon}
\newcommand{\half}{\tfrac{1}{2}}
\newcommand{\ts}{ \textstyle }
\newcommand{\diff}[2]{ \frac{\mathrm{d} #1 }{\mathrm{d}#2}}
\newcommand{\difftwo}[2]{ \frac{\mathrm{d^2} #1 }{\mathrm{d}{#2}^2}}
\newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\soln}{ \medskip\noindent\emph{Solution.}\ \ \ }
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\vr}{\mathbf{r}}
\newcommand{\vR}{\mathbf{R}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\va}{\mathbf{a}}
\newcommand{\vb}{\mathbf{b}}
\newcommand{\vc}{\mathbf{c}}
\newcommand{\vd}{\mathbf{d}}
\newcommand{\ve}{\mathbf{e}}
\newcommand{\vf}{\mathbf{f}}
\newcommand{\vC}{\mathbf{C}}
\newcommand{\vp}{\mathbf{p}}
\newcommand{\vn}{\mathbf{n}}
\newcommand{\vt}{\mathbf{t}}
\newcommand{\vu}{\mathbf{u}}
\newcommand{\vw}{\mathbf{w}}
\newcommand{\vV}{\mathbf{V}}
\newcommand{\vx}{\mathbf{x}}
\newcommand{\vF}{\mathbf{F}}
\newcommand{\vG}{\mathbf{G}}
\newcommand{\vH}{\mathbf{H}}
\newcommand{\vT}{\mathbf{T}}
\newcommand{\vN}{\mathbf{N}}
\newcommand{\vL}{\mathbf{L}}
\newcommand{\vA}{\mathbf{A}}
\newcommand{\vB}{\mathbf{B}}
\newcommand{\vD}{\mathbf{D}}
\newcommand{\vE}{\mathbf{E}}
\newcommand{\vJ}{\mathbf{J}}
\newcommand{\vZero}{\mathbf{0}}
\newcommand{\vPhi}{\mathbf{\Phi}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\Ha}{\hat{\mathbf{a}}}
\newcommand{\he}{\hat{\mathbf{e}}}
\newcommand{\hi}{\hat{\pmb{\imath}}}
\newcommand{\hj}{\hat{\pmb{\jmath}}}
\newcommand{\hk}{\hat{\mathbf{k}}}
\newcommand{\hn}{\hat{\mathbf{n}}}
\newcommand{\hr}{\hat{\mathbf{r}}}
\newcommand{\hvt}{\hat{\mathbf{t}}}
\newcommand{\hN}{\hat{\mathbf{N}}}
\newcommand{\vth}{{\pmb{\theta}}}
\newcommand{\vTh}{{\pmb{\Theta}}}
\newcommand{\vnabla}{ { \mathchoice{\pmb{\nabla}}
{\pmb{\nabla}}
{\pmb{\scriptstyle\nabla}}
{\pmb{\scriptscriptstyle\nabla}} } }
\newcommand{\ha}[1]{\mathbf{\hat e}^{(#1)}}
\newcommand{\Om}{\Omega}
\newcommand{\om}{\omega}
\newcommand{\vOm}{\pmb{\Omega}}
\newcommand{\vom}{\pmb{\omega}}
\newcommand{\svOm}{\pmb{\scriptsize\Omega}}
\newcommand{\al}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\ka}{\kappa}
\newcommand{\la}{\lambda}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\bbbone}{\mathbb{1}}
\DeclareMathOperator{\sgn}{sgn}
\def\tr{\mathop{\rm tr}}
\newcommand{\Atop}[2]{\genfrac{}{}{0pt}{}{#1}{#2}}
\newcommand{\dblInt}{\iint}
\newcommand{\tripInt}{\iiint}
\newcommand{\Set}[2]{\big\{ \ #1\ \big|\ #2\ \big\}}
\newcommand{\rhof}{{\rho_{\!{\scriptscriptstyle f}}}}
\newcommand{\rhob}{{\rho_{{\scriptscriptstyle b}}}}
\newcommand{\hT}{\hat{\mathbf{T}}}
\newcommand{\hB}{\hat{\mathbf{B}}}
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};
\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0)
node[right]{$x$};
\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0)
node[right]{$t$};
\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0)
node[right]{$t$};
\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{
\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{
\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{
\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{
\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\trigtri}[4]{
\begin{tikzpicture}
\draw (-.5,0)--(2,0)--(2,1.5)--cycle;
\draw (1.8,0) |- (2,.2);
\draw[double] (0,0) arc(0:30:.5cm);
\draw (0,.2) node[right]{$#1$};
\draw (1,-.5) node{$#2$};
\draw (2,.75) node[right]{$#3$};
\draw (.6,1.1) node[rotate=30]{$#4$};
\end{tikzpicture}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section A.1 Trigonometry
Subsection A.1.1 Trigonometry — Graphs
\begin{equation*}
\sin \theta
\end{equation*}
\begin{equation*}
\cos \theta
\end{equation*}
\begin{equation*}
\tan \theta
\end{equation*}
Subsection A.1.2 Trigonometry — Special Triangles
From the above pair of special triangles we have
\begin{align*}
\sin \frac{\pi}{4} &= \frac{1}{\sqrt{2}} & \sin \frac{\pi}{6} &= \frac{1}{2} & \sin \frac{\pi}{3} &= \frac{\sqrt{3}}{2}\\
\cos \frac{\pi}{4} &= \frac{1}{\sqrt{2}} & \cos \frac{\pi}{6} &= \frac{\sqrt{3}}{2} & \cos \frac{\pi}{3} &= \frac{1}{2}\\
\tan \frac{\pi}{4} &= 1 & \tan \frac{\pi}{6} &= \frac{1}{\sqrt{3}} & \tan
\frac{\pi}{3} &= \sqrt{3}
\end{align*}
Subsection A.1.3 Trigonometry — Simple Identities
Periodicity
\begin{align*}
\sin(\theta+2\pi) &= \sin(\theta) &
\cos(\theta+2\pi) &= \cos(\theta)
\end{align*}
Reflection
\begin{align*}
\sin(-\theta)&=-\sin(\theta) & \cos(-\theta) &=\cos(\theta)
\end{align*}
Reflection around
\(\pi/4\)
\begin{align*}
\sin\left(\tfrac{\pi}{2}-\theta\right)&=\cos\theta &
\cos\left(\tfrac{\pi}{2}-\theta\right)&=\sin\theta
\end{align*}
Reflection around
\(\pi/2\)
\begin{align*}
\sin\left(\pi-\theta\right)&=\sin\theta &
\cos\left(\pi-\theta\right)&=-\cos\theta
\end{align*}
Rotation by
\(\pi\)
\begin{align*}
\sin\left(\theta+\pi\right)&=-\sin\theta &
\cos\left(\theta+\pi\right)&=-\cos\theta
\end{align*}
Pythagoras
\begin{align*}
\sin^2\theta + \cos^2 \theta &=1\\
\tan^2\theta + 1 &= \sec^2\theta\\
1 + \cot^2 \theta &=\csc^2\theta
\end{align*}
\(\sin\) and
\(\cos\) building blocks
\begin{gather*}
\tan\theta=\frac{\sin\theta}{\cos\theta}\quad
\csc\theta=\frac{1}{\sin\theta}\quad
\sec\theta=\frac{1}{\cos\theta}\quad
\cot\theta=\frac{\cos\theta}{\sin\theta}=\frac{1}{\tan\theta}
\end{gather*}
Subsection A.1.4 Trigonometry — Add and Subtract Angles
Sine
\begin{align*}
\sin(\alpha \pm \beta) &= \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)
\end{align*}
Cosine
\begin{align*}
\cos(\alpha \pm \beta) &= \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)
\end{align*}
Tangent
\begin{align*}
\tan(\alpha+\beta)&=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\\
\tan(\alpha-\beta)&=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}
\end{align*}
Double angle
\begin{align*}
\sin(2\theta) &= 2\sin(\theta)\cos(\theta)\\
\cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\
&= 2\cos^2(\theta) - 1\\
&= 1 - 2\sin^2(\theta)\\
\tan(2\theta) &= \frac{2\tan(\theta)}{1-\tan^2\theta}\\
\cos^2\theta&=\frac{1+\cos(2\theta)}{2}\\
\sin^2\theta&=\frac{1-\cos(2\theta)}{2}\\
\tan^2\theta&=\frac{1-\cos(2\theta)}{1+\cos(2\theta)}
\end{align*}
Products to sums
\begin{align*}
\sin(\alpha)\cos(\beta)&= \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}\\
\sin(\alpha)\sin(\beta)&= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2}\\
\cos(\alpha)\cos(\beta)&= \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2}
\end{align*}
Sums to products
\begin{align*}
\sin\alpha+\sin\beta
&= 2 \sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\
\sin\alpha-\sin\beta
&= 2 \cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\
\cos\alpha+\cos\beta
&= 2 \cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\
\cos\alpha-\cos\beta
&= -2 \sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}
\end{align*}
Subsection A.1.5 Inverse Trigonometric Functions
\begin{equation*}
\arcsin x
\end{equation*}
\begin{equation*}
\arccos x
\end{equation*}
Domain: \(-1 \leq x \leq 1\)
Domain: \(-1 \leq x \leq 1\)
Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)
Range: \(0 \leq \arccos x \leq \pi\)
Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)
Since these functions are inverses of each other we have
\begin{align*}
\arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\
\arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\
\arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \lt \theta \lt \frac{\pi}{2}
\end{align*}
and also
\begin{align*}
\sin(\arcsin x) &= x & -1 \leq x \leq 1\\
\cos(\arccos x) &= x & -1 \leq x \leq 1\\
\tan(\arctan x) &= x & \text{any real } x
\end{align*}
\begin{equation*}
\arccsc x
\end{equation*}
\begin{equation*}
\arcsec x
\end{equation*}
\begin{equation*}
\arccot x
\end{equation*}
Range: \(-\frac{\pi}{2} \leq \arccsc x \leq \frac{\pi}{2}\)
Range: \(0 \leq \arcsec x \leq \pi\)
Range: \(0 \lt \arccot x \lt \pi\)
\begin{equation*}
\arccsc x \ne 0
\end{equation*}
\begin{equation*}
\arcsec x \ne \frac{\pi}{2}
\end{equation*}
Again
\begin{align*}
\arccsc(\csc \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},\ \theta\ne 0\\
\arcsec(\sec \theta) &= \theta & 0 \leq \theta \leq \pi,\ \theta\ne \frac{\pi}{2}\\
\arccot(\cot \theta) &= \theta & 0 \lt \theta \lt \pi
\end{align*}
and
\begin{align*}
\csc(\arccsc x) &= x & |x|\ge 1\\
\sec(\arcsec x) &= x & |x|\ge 1\\
\cot(\arccot x) &= x & \text{any real } x
\end{align*}