Skip to main content

CLP-4 Vector Calculus

Section A.1 Trigonometry

Subsection A.1.1 Trigonometry — Graphs

sinθ
cosθ
tanθ

Subsection A.1.2 Trigonometry — Special Triangles

From the above pair of special triangles we have
sinπ4=12sinπ6=12sinπ3=32cosπ4=12cosπ6=32cosπ3=12tanπ4=1tanπ6=13tanπ3=3

Subsection A.1.3 Trigonometry — Simple Identities

  • Periodicity
    sin(θ+2π)=sin(θ)cos(θ+2π)=cos(θ)
  • Reflection
    sin(θ)=sin(θ)cos(θ)=cos(θ)
  • Reflection around π/4
    sin(π2θ)=cosθcos(π2θ)=sinθ
  • Reflection around π/2
    sin(πθ)=sinθcos(πθ)=cosθ
  • Rotation by π
    sin(θ+π)=sinθcos(θ+π)=cosθ
  • Pythagoras
    sin2θ+cos2θ=1tan2θ+1=sec2θ1+cot2θ=csc2θ
  • sin and cos building blocks
    tanθ=sinθcosθcscθ=1sinθsecθ=1cosθcotθ=cosθsinθ=1tanθ

Subsection A.1.4 Trigonometry — Add and Subtract Angles

  • Sine
    sin(α±β)=sin(α)cos(β)±cos(α)sin(β)
  • Cosine
    cos(α±β)=cos(α)cos(β)sin(α)sin(β)
  • Tangent
    tan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ
  • Double angle
    sin(2θ)=2sin(θ)cos(θ)cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)tan(2θ)=2tan(θ)1tan2θcos2θ=1+cos(2θ)2sin2θ=1cos(2θ)2tan2θ=1cos(2θ)1+cos(2θ)
  • Products to sums
    sin(α)cos(β)=sin(α+β)+sin(αβ)2sin(α)sin(β)=cos(αβ)cos(α+β)2cos(α)cos(β)=cos(αβ)+cos(α+β)2
  • Sums to products
    sinα+sinβ=2sinα+β2cosαβ2sinαsinβ=2cosα+β2sinαβ2cosα+cosβ=2cosα+β2cosαβ2cosαcosβ=2sinα+β2sinαβ2

Subsection A.1.5 Inverse Trigonometric Functions

arcsinx
arccosx
arctanx
Domain: 1x1
Domain: 1x1
Domain: all real numbers
Range: π2arcsinxπ2
Range: 0arccosxπ
Range: π2<arctanx<π2
Since these functions are inverses of each other we have
arcsin(sinθ)=θπ2θπ2arccos(cosθ)=θ0θπarctan(tanθ)=θπ2<θ<π2
and also
sin(arcsinx)=x1x1cos(arccosx)=x1x1tan(arctanx)=xany real x
arccscx
arcsecx
arccotx
Domain: |x|1
Domain: |x|1
Domain: all real numbers
Range: π2arccscxπ2
Range: 0arcsecxπ
Range: 0<arccotx<π
arccscx0
arcsecxπ2
Again
arccsc(cscθ)=θπ2θπ2, θ0arcsec(secθ)=θ0θπ, θπ2arccot(cotθ)=θ0<θ<π
and
csc(arccscx)=x|x|1sec(arcsecx)=x|x|1cot(arccotx)=xany real x