Again start by applying the screening test Theorem
2.3.9.b. This time
\begin{align*}
\vnabla\times\vF
&=\det\left[\begin{matrix}
\hi &\hj & \hk \\
\frac{\partial\ }{\partial x} & \frac{\partial\ }{\partial y}
& \frac{\partial\ }{\partial z} \\
y^2+2xz^2-1 & (2x+1)y & 2x^2z+z^3
\end{matrix}\right]\\
&=0\hi-(4xz-4xz)\hj+(2y-2y)\hk\\
&=\vZero
\end{align*}
So \(\vF\) passes the screening test. Let’s look for a function \(\varphi(x,y,z)\) obeying
\begin{align*}
\frac{\partial \varphi}{\partial x}(x,y,z) &= y^2+2xz^2-1 \\
\frac{\partial \varphi}{\partial y}(x,y,z) &= (2x+1)y
\tag{$*$}\\
\frac{\partial \varphi}{\partial z}(x,y,z) &= 2x^2z+z^3
\end{align*}
The partial derivative \(\frac{\partial \ }{\partial x}\) treats \(y\) and \(z\) as constants. So \(\varphi(x,y,z)\) obeys the first equation if and only if there is a function \(\psi(y,z)\) with
\begin{equation*}
\varphi(x,y,z)
=xy^2+x^2z^2-x
+\psi(y,z)
\end{equation*}
This \(\varphi(x,y,z)\) will also obey the second equation if and only if
\begin{align*}
&\frac{\partial \ }{\partial y}\big(xy^2+x^2z^2-x+\psi(y,z)\big) = (2x+1)y\\
&\hskip1in\iff 2xy +\frac{\partial\psi}{\partial y}(y,z) = (2x+1)y\\
&\hskip1in\iff \frac{\partial\psi}{\partial y}(y,z) = y\\
&\hskip1in\iff \psi(y,z) = \frac{y^2}{2} +\zeta(z)
\end{align*}
for some function \(\zeta(z)\) which depends only on \(z\text{.}\) At this stage we know that
\begin{equation*}
\varphi(x,y,z)
=xy^2+x^2z^2-x+\psi(y,z)
=xy^2+x^2z^2-x+\frac{y^2}{2}+\zeta(z)
\end{equation*}
obeys the first two equations of (\(*\)), for any function \(\zeta(z)\text{.}\) Finally to have the third equation of (\(*\)) also satisfied, we also need to chose \(\zeta(z)\) to obey
\begin{align*}
&\frac{\partial \ }{\partial z}\left(xy^2+x^2z^2-x+\frac{y^2}{2}+\zeta(z)\right)
= 2x^2z+z^3\\
&\hskip1in\iff 2x^2z +\zeta'(z) = 2x^2z + z^3\\
&\hskip1in\iff \zeta'(z) = z^3\\
&\hskip1in\iff \zeta(z) = \frac{z^4}{4} + C
\end{align*}
for any constant \(C\text{.}\) So one possible potential, namely that with \(C=0\text{,}\) is
\begin{equation*}
\varphi(x,y,z)
=xy^2+x^2z^2-x+\frac{y^2}{2}+\frac{z^4}{4}
\end{equation*}
Note, as a check, that
\begin{equation*}
\vnabla \varphi(x,y,z)
=\big(y^2+2xz^2-1\big)\hi+\big(2xy+y)\hj+\big(2x^2z+z^3\big)\hk
\end{equation*}
as desired.