Skip to main content\(\require{cancel}\newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\half}{ \frac{1}{2} }
\newcommand{\ds}{\displaystyle}
\newcommand{\ts}{\textstyle}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\lin}{{\text{LIN}}}
\newcommand{\quot}{{\text{QR}}}
\newcommand{\simp}{{\text{SMP}}}
\newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\De}{\Delta}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\Si}{\Sigma}
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\ave}{\mathrm{ave}}
\newcommand{\llt}{\left \lt }
\newcommand{\rgt}{\right \gt }
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\IBP}[7]{
\begin{array}{|c | l | l |}
\hline
\color{red}{\text{Option 1:}}
& u=#2
&\color{red}{\dee{u}=#3 ~ \dee{#1}}
\\
& \dee{v}=#5~\dee{#1}
&\color{red}{v=#7}
\\
\hline
\color{blue}{\text{Option 2:}}
& u=#5
&\color{blue}{\dee{u}=#6 ~ \dee{#1}}
\\
&\dee{v}=#2 \dee{#1}
&\color{blue}{v=#4}
\\
\hline
\end{array}
}
\renewcommand{\textcolor}[2]{{\color{#1}{#2}}}
\newcommand{\trigtri}[4]{
\begin{tikzpicture}
\draw (-.5,0)--(2,0)--(2,1.5)--cycle;
\draw (1.8,0) |- (2,.2);
\draw[double] (0,0) arc(0:30:.5cm);
\draw (0,.2) node[right]{$#1$};
\draw (1,-.5) node{$#2$};
\draw (2,.75) node[right]{$#3$};
\draw (.6,1.1) node[rotate=30]{$#4$};
\end{tikzpicture}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.13 More Integration Examples
Exercises Exercises
Recall that we are using \(\log x\) to denote the logarithm of \(x\) with base \(e\text{.}\) In other courses it is often denoted \(\ln x\text{.}\)
Exercises — Stage 1
.
1.
Match the integration method to a common kind of integrand it’s used to antidifferentiate.
(A) \(u=f(x)\) substitution |
(I) |
a function multiplied by its derivative |
(B) trigonometric substitution |
(II) |
a polynomial times an exponential |
(C) integration by parts |
(III) |
a rational function |
(D) partial fractions |
(IV) |
the square root of a quadratic function |
Exercises — Stage 2
.
2.
Evaluate \(\displaystyle\int_0^{{\pi}/{2}} \sin^4 x \cos^5 x \dee{x}\text{.}\)
3.
Evaluate \(\displaystyle\int \sqrt{3-5x^2}\dee{x}\text{.}\)
4.
Evaluate \(\displaystyle\int_0^\infty \dfrac{x-1}{e^x}\dee{x}\text{.}\)
5.
Evaluate \(\displaystyle\int \frac{-2}{3x^2+4x+1}\dee{x}\text{.}\)
6.
Evaluate \(\displaystyle\int_1^2 x^2\log x \dee{x}\text{.}\)
7. (✳).
Evaluate \(\displaystyle\int\frac{x}{x^2-3}\,\dee{x}\text{.}\)
8. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int_0^4\frac{x}{\sqrt{9+x^2}}\,\dee{x}\)
\(\displaystyle \displaystyle\int_0^{\pi/2}\cos^3x\ \sin^2x\,\dee{x}\)
\(\displaystyle \displaystyle\int_1^{e}x^3\log x\,\dee{x}\)
9. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int_0^{\pi/2} x\sin x\,\dee{x} \)
\(\displaystyle \displaystyle\int_0^{\pi/2} \cos^5 x\,\dee{x} \)
10. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int_0^2 xe^x\,\dee{x}\)
\(\displaystyle \displaystyle\int_0^1\frac{1}{\sqrt{1+x^2}}\,\dee{x}\)
\(\displaystyle \displaystyle\int_3^5\frac{4x}{(x^2-1)(x^2+1)}\,\dee{x}\)
11. (✳).
Calculate the following integrals.
\(\displaystyle \displaystyle\int_0^3\sqrt{9-x^2}\,\dee{x}\)
\(\displaystyle \displaystyle\int_0^1\log(1+x^2)\,\dee{x}\)
\(\displaystyle \displaystyle\int_3^\infty\frac{x}{(x-1)^2(x-2)}\,\dee{x}\)
12.
Evaluate \(\displaystyle\int\frac{\sin^4\theta-5\sin^3\theta+4\sin^2\theta+10\sin\theta}{\sin^2\theta-5\sin\theta+6}\cos\theta\dee{\theta}\text{.}\)
13. (✳).
Evaluate the following integrals. Show your work.
\(\displaystyle \displaystyle\int_0^{\pi\over 4}\sin^2(2x)\cos^3(2x)\ \dee{x}\)
\(\displaystyle \displaystyle\int\big(9+x^2\big)^{-{3\over 2}}\ \dee{x}\)
\(\displaystyle \displaystyle\int\frac{\dee{x}}{(x-1)(x^2+1)}\)
\(\displaystyle \displaystyle\int x\arctan x\ \dee{x}\)
14. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int_0^{\pi/4}\sin^5(2x)\,\cos(2x)\ \dee{x}\)
\(\displaystyle \displaystyle\int\sqrt{4-x^2}\ \dee{x}\)
\(\displaystyle \displaystyle\int\frac{x+1}{x^2(x-1)}\ \dee{x}\)
15. (✳).
Calculate the following integrals.
\(\displaystyle \displaystyle\int_0^\infty e^{-x} \sin(2x)\,\dee{x}\)
\(\displaystyle \displaystyle\int_0^{\sqrt{2}}\frac{1}{(2+x^2)^{3/2}}\,\dee{x}\)
\(\displaystyle \displaystyle\int_0^1 x\log(1+x^2)\,\dee{x}\)
\(\displaystyle \displaystyle\int_3^\infty\frac{1}{(x-1)^2(x-2)}\,\dee{x}\)
16. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int x\,\log x\ \dee{x}\)
\(\displaystyle \displaystyle\int\frac{(x-1)\,\dee{x}}{x^2+4x+5}\)
\(\displaystyle \displaystyle\int\frac{\dee{x}}{x^2-4x+3}\)
\(\displaystyle \displaystyle\int\frac{x^2\,\dee{x}}{1+x^6}\)
17. (✳).
Evaluate the following integrals.
\(\displaystyle\int_0^1\arctan x\ \dee{x}\text{.}\)
\(\displaystyle\int\frac{2x-1}{x^2-2x+5}\ \dee{x}\text{.}\)
18. (✳).
Evaluate \({\displaystyle \int\frac{x^2}{(x^3 + 1)^{101}}\,\dee{x}}\text{.}\)
Evaluate \(\displaystyle\int \cos^3\!x\ \sin^4\!x\ \dee{x}\text{.}\)
19.
Evaluate \(\displaystyle\int_{\pi/2}^\pi \frac{\cos x}{\sqrt{\sin x}}\dee{x}\text{.}\)
20. (✳).
Evaluate the following integrals.
\(\displaystyle \displaystyle\int \frac{e^x}{(e^x+1)(e^x-3)}\, \dee{x}\)
\(\displaystyle \displaystyle\int_2^4 \frac{x^2-4x+4}{\sqrt{12+4x-x^2}}\, \dee{x}\)
21. (✳).
Evaluate these integrals.
\(\displaystyle \displaystyle\int\frac{\sin^3x}{\cos^3x} \ \dee{x}\)
\(\displaystyle \displaystyle\int_{-2}^{2}\frac{x^4}{x^{10}+16}\ \dee{x}\)
22.
Evaluate \(\displaystyle\int x\sqrt{x-1}\dee{x}\text{.}\)
23.
Evaluate \(\displaystyle\int \frac{\sqrt{x^2-2}}{x^2}\dee{x}\) for \(x\ge\sqrt{2}\text{.}\)
You may use that \(\int \sec x\dee{x} = \log|\sec x+\tan x| +C\text{.}\)
24.
Evaluate \(\displaystyle\int_0^{\pi/4} \sec^4x\tan^5x\,\dee{x}\text{.}\)
25.
Evaluate \(\displaystyle\int \frac{3x^2+4x+6}{(x+1)^3} \, \dee{x}\text{.}\)
26.
Evaluate \(\displaystyle\int\frac{1}{x^2+x+1}\,\dee{x}\text{.}\)
27.
Evaluate \(\displaystyle\int \sin x \cos x \tan x\dee{x}\text{.}\)
28.
Evaluate \(\displaystyle\int \frac{1}{x^3+1}\dee{x}\text{.}\)
29.
Evaluate \(\displaystyle\int (3x)^2\arcsin x \dee{x}\text{.}\)
Exercises — Stage 3
.
30.
Evaluate \(\displaystyle\int_0^{\pi/2}\sqrt{\cos t+1}\ \dee{t}\text{.}\)
31.
Evaluate \(\displaystyle\int_1^e \frac{\log\sqrt{x}}{{x}}\,\dee{x}\text{.}\)
32.
Evaluate \(\displaystyle\int_{0.1}^{0.2} \frac{\tan x}{\log(\cos x)}\, \dee{x}\text{.}\)
33. (✳).
Evaluate these integrals.
\(\displaystyle \displaystyle\int\sin(\log x) \ \dee{x}\)
\(\displaystyle \displaystyle\int_0^1\frac{1}{x^2-5x+6}\ \dee{x}\)
34. (✳).
Evaluate (with justification).
\(\displaystyle \displaystyle\int_0^3(x+1)\sqrt{9-x^2} \ \dee{x}\)
\(\displaystyle \displaystyle\int\frac{4x+8}{(x-2)(x^2+4)}\ \dee{x}\)
\(\displaystyle \displaystyle\int_{-\infty}^{+\infty} \frac{1}{e^x+e^{-x}}\ \dee{x}\)
35.
Evaluate \(\displaystyle\int \sqrt{\frac{x}{1-x}}\dee{x}\text{.}\)
36.
Evaluate \(\displaystyle\int_0^1e^{2x}e^{e^x}\,\dee{x}\text{.}\)
37.
Evaluate \(\displaystyle\int\frac{xe^x}{(x+1)^2}\dee{x}\text{.}\)
38.
Evaluate \(\displaystyle\int \frac{x\sin x}{\cos^2 x}\,\dee{x}\text{.}\)
You may use that \(\int \sec x\dee{x} = \log|\sec x+\tan x| +C\text{.}\)
39.
Evaluate \(\displaystyle\int x(x+a)^n\dee{x}\text{,}\) where \(a\) and \(n\) are constants.
40.
Evaluate \(\displaystyle\int\arctan (x^2)\dee{x}\text{.}\)