Skip to main content

CLP-2 Integral Calculus

Section 1.13 More Integration Examples

Exercises Exercises

Recall that we are using logx to denote the logarithm of x with base e. In other courses it is often denoted lnx.

Exercises — Stage 1 .

1.
Match the integration method to a common kind of integrand it’s used to antidifferentiate.
(A) u=f(x) substitution (I) a function multiplied by its derivative
(B) trigonometric substitution (II) a polynomial times an exponential
(C) integration by parts (III) a rational function
(D) partial fractions (IV) the square root of a quadratic function

Exercises — Stage 2 .

2.
Evaluate 0π/2sin4xcos5xdx.
5.
Evaluate 23x2+4x+1dx.
7. (✳).
Evaluate xx23dx.
8. (✳).
Evaluate the following integrals.
  1. 04x9+x2dx
  2. 0π/2cos3x sin2xdx
  3. 1ex3logxdx
9. (✳).
Evaluate the following integrals.
  1. 0π/2xsinxdx
  2. 0π/2cos5xdx
10. (✳).
Evaluate the following integrals.
  1. 02xexdx
  2. 0111+x2dx
  3. 354x(x21)(x2+1)dx
11. (✳).
Calculate the following integrals.
  1. 039x2dx
  2. 01log(1+x2)dx
  3. 3x(x1)2(x2)dx
12.
Evaluate sin4θ5sin3θ+4sin2θ+10sinθsin2θ5sinθ+6cosθdθ.
13. (✳).
Evaluate the following integrals. Show your work.
  1. 0π4sin2(2x)cos3(2x) dx
  2. (9+x2)32 dx
  3. dx(x1)(x2+1)
  4. xarctanx dx
14. (✳).
Evaluate the following integrals.
  1. 0π/4sin5(2x)cos(2x) dx
  2. 4x2 dx
  3. x+1x2(x1) dx
15. (✳).
Calculate the following integrals.
  1. 0exsin(2x)dx
  2. 021(2+x2)3/2dx
  3. 01xlog(1+x2)dx
  4. 31(x1)2(x2)dx
16. (✳).
Evaluate the following integrals.
  1. xlogx dx
  2. (x1)dxx2+4x+5
  3. dxx24x+3
  4. x2dx1+x6
17. (✳).
Evaluate the following integrals.
  1. 01arctanx dx.
  2. 2x1x22x+5 dx.
18. (✳).
  1. Evaluate x2(x3+1)101dx.
  2. Evaluate cos3x sin4x dx.
19.
Evaluate π/2πcosxsinxdx.
20. (✳).
Evaluate the following integrals.
  1. ex(ex+1)(ex3)dx
  2. 24x24x+412+4xx2dx
21. (✳).
Evaluate these integrals.
  1. sin3xcos3x dx
  2. 22x4x10+16 dx
23.
Evaluate x22x2dx for x2.
You may use that secxdx=log|secx+tanx|+C.
24.
Evaluate 0π/4sec4xtan5xdx.
25.
Evaluate 3x2+4x+6(x+1)3dx.
27.
Evaluate sinxcosxtanxdx.
29.
Evaluate (3x)2arcsinxdx.

Exercises — Stage 3 .

30.
Evaluate 0π/2cost+1 dt.
32.
Evaluate 0.10.2tanxlog(cosx)dx.
33. (✳).
Evaluate these integrals.
  1. sin(logx) dx
  2. 011x25x+6 dx
34. (✳).
Evaluate (with justification).
  1. 03(x+1)9x2 dx
  2. 4x+8(x2)(x2+4) dx
  3. +1ex+ex dx
38.
Evaluate xsinxcos2xdx.
You may use that secxdx=log|secx+tanx|+C.
39.
Evaluate x(x+a)ndx, where a and n are constants.
40.
Evaluate arctan(x2)dx.