We are now going to consider partial sums for the series \(\sum_{n=1}^\infty n^k\text{,}\) for several values of the parameter \(k\text{.}\) In the last example, we found the partial sum
\begin{gather*}
\sum_{n=1}^N n = \tfrac{1}{2}N(N+1)
\end{gather*}
for the case
\(k=1\text{.}\) In Theorem
1.1.6 we stated the partial sums
\begin{align*}
\sum_{n=1}^N n^2 &= \tfrac{1}{6}N(N+1)(2N+1) \\
\sum_{n=1}^N n^3 &= \Big[\tfrac{1}{2}N(N+1)\Big]^2
\end{align*}
for the cases \(k=2\) and \(k=3\text{.}\) In that theorem, while we gave a strategy that could be used to prove those formulae, we did not actually give the proofs. We are now going to give the proofs, using a different strategy — a strategy that can be used to find the partial sums for any natural number \(k\text{.}\) As a warmup, we’ll start with \(k=1\text{,}\) even though we have already handled that case. The strategy is based on the observation that the telescoping sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^2 -n^2\big\} &= (N+1)^2 -1 = N^2+2N
\end{align*}
On the other hand, the same sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^2 -n^2\big\} &= \sum_{n=1}^N \big\{2n+1\big\}
= 2\left[\sum_{n=1}^N n\right] + \left[\sum_{n=1}^N 1\right] \\
&= 2\left[\sum_{n=1}^N n\right] + N
\end{align*}
Equating the two formulae for \(\sum_{n=1}^N \big\{(n+1)^2 -n^2\big\}\) gives
\begin{align*}
&N^2+2N = 2\left[\sum_{n=1}^N n\right] + N \\
\implies &\sum_{n=1}^N n = \tfrac{1}{2}\big[N^2+N\big]
=\tfrac{1}{2} N (N+1)
\end{align*}
as we found in Example
3.2.11. Now we move on to
\(k=2\text{.}\) This time we use the telescoping sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^3 -n^3\big\} &= (N+1)^3 -1 = N^3 + 3N^2 +3N
\end{align*}
On the other hand, the same sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^3 -n^3\big\} &= \sum_{n=1}^N \big\{3n^2 + 3n+1\big\}
= 3\left[\sum_{n=1}^N n^2\right] +
3\left[\sum_{n=1}^N n\right] +
\left[\sum_{n=1}^N 1\right] \\
&= 3\left[\sum_{n=1}^N n^2\right] + \tfrac{3}{2}N(N+1) + N
\end{align*}
Equating the two formulae for \(\sum_{n=1}^N \big\{(n+1)^3 -n^3\big\}\) gives
\begin{align*}
N^3 + 3N^2 +3N &= 3\left[\sum_{n=1}^N n^2\right] + \tfrac{3}{2}N^2 +\tfrac{5}{2}N\\
\implies \sum_{n=1}^N n^2 &= \tfrac{1}{3}\Big[N^3 + \tfrac{3}{2}N^2 +\tfrac{1}{2}N\Big]
=\tfrac{1}{6}N\Big[2N^2+3N+1\Big]\\
&=\tfrac{1}{6}N(N+1)(2N+1)
\end{align*}
as stated in Theorem
1.1.6. Finally, we get to
\(k=3\text{.}\) This time we use the telescoping sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^4 -n^4\big\} &= (N+1)^4 -1
\end{align*}
On the other hand, the same sum
\begin{align*}
\sum_{n=1}^N \big\{(n+1)^4 -n^4\big\} &= \sum_{n=1}^N \big\{4n^3 +6n^2+4n+1\big\} \\
&= 4\left[\sum_{n=1}^N n^3\right] +
6\left[\sum_{n=1}^N n^2\right] +
4\left[\sum_{n=1}^N n\right] +
\left[\sum_{n=1}^N 1\right] \\
&= 4\left[\sum_{n=1}^N n^3\right] + N(N+1)(2N+1)
+2N(N+1) + N
\end{align*}
Equating the two formulae for \(\sum_{n=1}^N \big\{(n+1)^4 -n^4\big\}\) gives
\begin{align*}
(N+1)^4 -1 &= 4\left[\sum_{n=1}^N n^3\right] + (N+1)(2N^2+3N) + N \\
\implies \sum_{n=1}^N n^3 &= \tfrac{1}{4}\Big[(N+1)^4-1-(N+1)(2N^3+3N) -N\Big] \\
&=\tfrac{1}{4}(N+1)\Big[(N+1)^3-(2N^2+3N) -1\Big] \\
&=\tfrac{1}{4}(N+1)\Big[N^3+N^2\Big] \\
&=\tfrac{1}{4}N^2(N+1)^2
\end{align*}
as stated in Theorem
1.1.6.