Skip to main content

CLP-2 Integral Calculus

Section A.9 Inverse Trigonometric Functions

Some of you may not have studied inverse trigonometric functions in highschool, however we still expect you to know them by the end of the course.
\begin{equation*} \arcsin x \end{equation*}
\begin{equation*} \arccos x \end{equation*}
\begin{equation*} \arctan x \end{equation*}
Domain: \(-1 \leq x \leq 1\)
Domain: \(-1 \leq x \leq 1\)
Domain: all real numbers
Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)
Range: \(0 \leq \arccos x \leq \pi\)
Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)
Since these functions are inverses of each other we have
\begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \lt \theta \lt \frac{\pi}{2} \end{align*}
and also
\begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real } x \end{align*}
\begin{equation*} \arccsc x \end{equation*}
\begin{equation*} \arcsec x \end{equation*}
\begin{equation*} \arccot x \end{equation*}
Domain: \(|x|\ge 1\)
Domain: \(|x|\ge 1\)
Domain: all real numbers
Range: \(-\frac{\pi}{2} \leq \arccsc x \leq \frac{\pi}{2}\)
Range: \(0 \leq \arcsec x \leq \pi\)
Range: \(0 \lt \arccot x \lt \pi\)
\begin{equation*} \arccsc x \ne 0 \end{equation*}
\begin{equation*} \arcsec x \ne \frac{\pi}{2} \end{equation*}
Again
\begin{align*} \arccsc(\csc \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},\ \theta\ne 0\\ \arcsec(\sec \theta) & = \theta & 0 \leq \theta \leq \pi,\ \theta\ne \frac{\pi}{2}\\ \arccot(\cot \theta) & = \theta & 0 \lt \theta \lt \pi \end{align*}
and
\begin{align*} \csc(\arccsc x) &= x & |x|\ge 1\\ \sec(\arcsec x) &= x & |x|\ge 1\\ \cot(\arccot x) &= x & \text{any real } x \end{align*}