In Theorem
3.6.7 we stated that
\begin{equation*}
\log(1+x) = \sum_{n=0}^\infty (-1)^n\frac{x^{n+1}}{n+1}
= x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots
\tag{S1}
\end{equation*}
for all
\(-1\lt x\le 1\text{.}\) But, so far, we have not justified this statement. We do so now, using (both parts of) Theorem
3.6.11. We start by setting
\(f(x)=\log(1+x)\) and finding the Taylor polynomials
\(T_n(0,x)\text{,}\) and the corresponding errors
\(E_n(0,x)\text{,}\) for
\(f(x)\text{.}\)
\begin{align*}
f(x) &= \log(1+x) & f(0) &= \log 1 = 0 \\
f'(x) &= \frac{1}{1+x} & f'(0) &= 1 \\
f''(x) &= \frac{-1}{(1+x)^2} & f''(0) &= -1
\\\
f'''(x) &= \frac{2}{(1+x)^3} & f'''(0) &= 2 \\
f^{(4)}(x) &= \frac{-2\times 3}{(1+x)^4} & f^{(4)}(0) &= -3!
\\\
f^{(5)}(x) &= \frac{2\times 3\times 4}{(1+x)^5} & f^{(5)}(0) &= 4!
\\\
&\ \ \ \vdots & &\ \ \ \vdots \\
f^{(n)}(x)&=\frac{(-1)^{n+1}(n-1)!}{(1+x)^n} & f^{(n)}(0) &= (-1)^{n+1}(n-1)!
\end{align*}
So the Taylor polynomial of degree \(n\) for the function \(f(x)=\log(1+x)\text{,}\) expanded about \(a=0\text{,}\) is
\begin{align*}
T_n(0,x) &=f(0)+f'(0)\,x+\cdots+\tfrac{1}{n!}f^{(n)}(0)\, x^n \\
&= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5
+\cdots + \frac{(-1)^{n+1}}{n}x^n
\end{align*}
Theorem
3.6.11 gives us two formulae for the error
\(E_n(0,x) = f(x) - T_n(0,x)\) made when we approximate
\(f(x)\) by
\(T_n(0,x)\text{.}\) Part (a) of the theorem gives
\begin{equation*}
E_n(0,x) = \int_0^x \frac{1}{n!}f^{(n+1)}(t)\, (x-t)^n\,\dee{t}
= (-1)^n \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}}\,\dee{t}
\tag{Ea}
\end{equation*}
and part (b) gives
\begin{equation*}
E_n(0,x)=\frac{1}{(n+1)!}\,f^{(n+1)}(c)\, x^{n+1}
= (-1)^n\,\frac{1}{n+1}\,\frac{x^{n+1}}{(1+c)^{n+1}}
\tag{Eb}
\end{equation*}
for some (unknown) \(c\) between \(0\) and \(x\text{.}\) The statement (S1), that we wish to prove, is equivalent to the statement
\begin{equation*}
\lim_{n\rightarrow\infty} E_n(0,x)=0 \qquad\text{for all }-1\lt x\le 1
\tag{S2}
\end{equation*}
and we will now show that (S2) is true.
- The case \(x=0\text{:}\)
This case is trivial, since, when \(x=0\text{,}\) \(E_n(0,x)=0\) for all \(n\text{.}\)
- The case \(0\lt x\le 1\text{:}\)
This case is relatively easy to deal with using (Eb). In this case \(0\lt x\le 1\text{,}\) so that the \(c\) of (Eb) must be positive and
\begin{align*}
\left|E_n(0,x)\right|
&= \frac{1}{n+1}\frac{x^{n+1}}{(1+c)^{n+1}}\\
&\le \frac{1}{n+1}\frac{1^{n+1}}{(1+0)^{n+1}}\\
&=\frac{1}{n+1}
\end{align*}
converges to zero as \(n\rightarrow\infty\text{.}\)
- The case \(-1\lt x\lt 0\text{:}\)
-
When \(-1\lt x\lt 0\) is close to \(-1\text{,}\) (Eb) is not sufficient to show that (S2) is true. To see this, let’s consider the example \(x=-0.8\text{.}\) All we know about the \(c\) of (Eb) is that it has to be between \(0\) and \(-0.8\text{.}\) For example, (Eb) certainly allows \(c\) to be \(-0.6\) and then
\begin{align*}
&\left|(-1)^n\frac{1}{n+1}\frac{x^{n+1}}{(1+c)^{n+1}}
\right|_{\genfrac{}{}{0pt}{}{x=-0.8}{c=-0.6}}\\
&\hskip0.25in=\frac{1}{n+1}\frac{0.8^{n+1}}{(1-0.6)^{n+1}}\\
&\hskip0.25in=\frac{1}{n+1}2^{n+1}
\end{align*}
goes to \(+\infty\) as \(n\rightarrow\infty\text{.}\)
Note that, while this does tell us that (Eb) is not sufficient to prove (S2), when \(x\) is close to \(-1\text{,}\) it does not also tell us that \(\lim\limits_{n\rightarrow\infty}|E_n(0,-0.8)|=+\infty\) (which would imply that (S2) is false) — \(c\) could equally well be \(-0.2\) and then
\begin{align*}
&\left|(-1)^n\frac{1}{n+1}\frac{x^{n+1}}{(1+c)^{n+1}}
\right|_{\genfrac{}{}{0pt}{}{x=-0.8}{c=-0.2}}\\
&\hskip0.25in=\frac{1}{n+1}\frac{0.8^{n+1}}{(1-0.2)^{n+1}}\\
&\hskip0.25in=\frac{1}{n+1}
\end{align*}
goes to \(0\) as \(n\rightarrow\infty\text{.}\)
We’ll now use (Ea) (which has the advantage of not containing any unknown free parameter \(c\)) to verify (S2) when \(-1\lt x\lt 0\text{.}\) Rewrite the right hand side of (Ea)
\begin{align*}
& (-1)^n \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}}\,\dee{t}
=-\int_x^0 \frac{(t-x)^n}{(1+t)^{n+1}}\,\dee{t} \\
&=-\int_0^{-x}\frac{s^n}{(1+x+s)^{n+1}}\,\dee{s}
\ s=t-x,\,\dee{s}=\dee{t}
\end{align*}
The exact evaluation of this integral is very messy and not very illuminating. Instead, we bound it. Note that, for \(1+x\gt 0\text{,}\)
\begin{align*}
\diff{}{s}\left(\frac{s}{1+x+s}\right)
&= \diff{}{s}\left(\frac{1+x+s-(1+x)}{1+x+s} \right)\\
&= \diff{}{s}\left(1- \frac{1+x}{1+x+s}\right) \\
&=\frac{1+x}{(1+x+s)^2}
\gt 0
\end{align*}
so that \(\frac{s}{1+x+s}\) increases as \(s\) increases. Consequently, the biggest value that \(\frac{s}{1+x+s}\) takes on the domain of integration \(0\le s\le -x=|x|\) is
\begin{equation*}
\frac{s}{1+x+s}\bigg|_{s=-x} = -x = |x|
\end{equation*}
and the integrand
\begin{align*}
0\le \frac{s^n}{[1+x+s]^{n+1}}
&=\left(\frac{s}{1+x+s}\right)^n\frac{1}{1+x+s}\\
&\le \frac{|x|^n}{1+x+s}
\end{align*}
Consequently,
\begin{align*}
\left|E_n(0,x)\right|
&= \left|(-1)^n \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}}\,\dee{t}\right|\\
&=\int_0^{-x}\frac{s^n}{[1+x+s]^{n+1}}\,\dee{s} \\
&\le |x|^n \int_0^{-x}\frac{1}{1+x+s}\,\dee{s}\\
&=|x|^n\Big[\log(1+x+s)\Big]_{s=0}^{s=-x} \\
&= |x|^n [-\log(1+x)]
\end{align*}
converges to zero as \(n\rightarrow\infty\) for each fixed \(-1\lt x\lt 0\text{.}\)
So we have verified (S2), as desired.