Gordon Slade's Publications

Preprints
Books
Edited book
Journal Articles and Conference Proceedings
Expository Writing
Other
Collaborators





    Preprints:

  1. Y. Liu, J. Park and G. Slade. Universal finite-size scaling in high-dimensional critical phenomena. 7 pages. December 11, 2024.
    arXiv
  2. Y. Liu and G. Slade. Critical scaling profile for trees and connected subgraphs on the complete graph. 15 pages. December 7, 2024.
    arXiv
  3. Y. Liu and G. Slade. Near-critical and finite-size scaling for high-dimensional lattice trees and animals. 43 pages. December 7, 2024.
    arXiv
  4. Y. Liu, R. Panis and G. Slade. The torus plateau for the high-dimensional Ising model. 29 pages. May 27, 2024.
    arXiv
  5. J. Park and G. Slade. Boundary conditions and the two-point function plateau for the hierarchical |φ|4 model in dimensions 4 and higher. 56 pages. Revised January 4, 2025.
    arXiv
  6. E. Michta, J. Park and G. Slade. Boundary conditions and universal finite-size scaling for the hierarchical |φ|4 model in dimensions 4 and higher. 102 pages. June 1, 2023.
    arXiv
  7. Back to top

    Books:

  8. R. Bauerschmidt, D.C. Brydges and G. Slade, Introduction to a Renormalisation Group Method, Lecture Notes in Mathematics #2242, xii + 281 pages. Springer, Singapore, (2019).
    arXiv Corrections
  9. G. Slade. The Lace Expansion and its Applications, Lecture Notes in Mathematics #1879, xiv + 232 pages. Springer, Berlin, (2006).
    pdf
    Students' solutions to all the exercises in the lecture notes, edited by S. Kliem and R. Liang (November 2, 2005): PS file
  10. N. Madras and G. Slade, The Self-Avoiding Walk , Birkhäuser, Boston, (1993). xiv + 425 pages. Paperback edition 1996. Reprinted as a Modern Birkhäuser Classic 2013.
  11. Back to top

    Edited book:

  12. M.T. Barlow and G. Slade (editors), Random Graphs, Phase Transitions, and the Gaussian Free Field, PIMS-CRM Summer School in Probability, Vancouver, Canada, June 5-30, 2017, Proceedings in Mathematics & Statistics (PROMS) volume 304, xvii + 407 pages. Springer, Switzerland, (2020).
  13. Back to top


    Journal Articles and Conference Proceedings:

  14. Y. Liu and G. Slade. Gaussian deconvolution and the lace expansion for spread-out models. To appear in Ann. Inst. H. Poincaré Probab. Statist.
    arXiv
  15. Y. Liu and G. Slade. Gaussian deconvolution and the lace expansion. Probab. Theory Relat. Fields (2024).
    arXiv
  16. E. Michta and G. Slade. Weakly self-avoiding walk on a high-dimensional torus. Probab. Math. Phys., 4:331--375, (2023).
    arXiv video
  17. G. Slade. The near-critical two-point function and the torus plateau for weakly self-avoiding walk in high dimensions. Math. Phys. Anal. Geom., 26:article 6, (2023).
    arXiv
  18. T. Hutchcroft, E. Michta and G. Slade. High-dimensional near-critical percolation and the torus plateau. Ann. Probab., 51:580--625, (2023).
    pdf video
  19. G. Slade. Self-avoiding walk on the hypercube. Random Struct. Alg., 62:689--736, (2023).
    arXiv
  20. E. Michta and G. Slade. Asymptotic behaviour of the lattice Green function. ALEA, Lat. Am. J. Probab. Math. Stat., 19:957--981, (2022)
    arXiv
  21. G. Slade. A simple convergence proof for the lace expansion. Ann. Inst. H. Poincaré Probab. Statist., 58:26--33, (2022).
    arXiv
  22. R. Bauerschmidt and G. Slade. Mean-field tricritical polymers. Probab. Math. Phys., 1:167--204, (2020).
    arXiv video
  23. G. Slade. Self-avoiding walk on the complete graph. J. Math. Soc. Japan, 72:1189--1200, (2020).
    arXiv
  24. R. Bauerschmidt, M. Lohmann and G. Slade. Three-dimensional tricritical spins and polymers. J. Math. Phys., 61:033302, (2020).
    arXiv
  25. A. Sakai and G. Slade. Spatial moments for high-dimensional critical contact process, oriented percolation and lattice trees. Elect. J. Probab., 24, paper no. 65, pp.1-18, (2019).
    arXiv
  26. G. Slade. Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A, 475:20181549, (2019).
    arXiv video
  27. G. Slade. Critical exponents for long-range O(n) models below the upper critical dimension. Commun. Math. Phys., 358:343--436, (2018).
    arXiv
  28. M. Lohmann, G. Slade and B.C. Wallace. Critical two-point function for long-range O(n) models below the upper critical dimension. J. Stat. Phys., 169:1132--1161, (2017).
    arXiv
  29. R. Bauerschmidt, G. Slade and B.C. Wallace. Four-dimensional weakly self-avoiding walk with contact self-attraction. J. Stat. Phys., 167:317--350, (2017).
    pdf Corrections
  30. R. Bauerschmidt, G. Slade, A. Tomberg and B.C. Wallace. Finite-order correlation length for 4-dimensional weakly self-avoiding walk and |φ|4 spins. Annales Henri Poincaré, 18:375--402, (2017).
    pdf Corrections
  31. G. Slade and A. Tomberg. Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component |φ|4 model. Commun. Math. Phys., 342:675--737, (2016).
    pdf Corrections
  32. R. Bauerschmidt, D.C. Brydges and G. Slade. Renormalisation group analysis of 4D spin models and self-avoiding walk. February 12, 2016.
    For the Proceedings of the International Congress on Mathematical Physics, Santiago de Chile, 2015.
    arXiv
  33. R. Bauerschmidt, D.C. Brydges and G. Slade. Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys., 338:169--193, (2015).
    pdf
  34. R. Bauerschmidt, D.C. Brydges and G. Slade. Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys., 337:817--877, (2015).
    pdf Corrections
  35. D.C. Brydges and G. Slade. A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys., 159:421--460, (2015).
    pdf Corrections
  36. D.C. Brydges and G. Slade. A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys., 159:461--491, (2015).
    pdf
  37. R. Bauerschmidt, D.C. Brydges and G. Slade. A renormalisation group method. III. Perturbative analysis. J. Stat. Phys., 159:492--529, (2015).
    pdf Corrections
    Software for calculations in this paper.
  38. D.C. Brydges and G. Slade. A renormalisation group method. IV. Stability analysis. J. Stat. Phys., 159:530--588, (2015).
    pdf Corrections
  39. D.C. Brydges and G. Slade. A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys., 159:589--667, (2015).
    pdf Corrections
  40. R. Bauerschmidt, D.C. Brydges and G. Slade. Structural stability of a dynamical system near a non-hyperbolic fixed point. Annales Henri Poincaré, 16:1033--1065, (2015).
    pdf Corrections
  41. R. Bauerschmidt, D.C. Brydges and G. Slade. Scaling limits and critical behaviour of the 4-dimensional n-component |φ|4 spin model. J. Stat. Phys., 157:692--742, (2014).
    Special issue devoted to the memory of Kenneth G. Wilson.
    pdf Corrections
  42. Y. Mejía Miranda and G. Slade. Expansion in high dimensions for the growth constants of lattice trees and lattice animals. Combinatorics, Probability and Computing 22:527--565, (2013). (CUP holds copyright.)
    pdf
  43. R. Bauerschmidt, H. Duminil-Copin, J. Goodman and G. Slade. Lectures on self-avoiding walks. In: Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, vol. 15, Amer. Math. Soc., Providence, RI, 2012, pp. 395-467. These are lecture notes from the Clay Mathematics Institute Summer School and XIV Escola Brasileira de Probabilidade in Búzios, Brazil in 2010.
    pdf
  44. D.C. Brydges, A. Dahlqvist and G. Slade. The strong interaction limit of continuous-time weakly self-avoiding walk. In Probability in Complex Physical Systems: In Honour of Erwin Bolthausen and Jürgen Gärtner, eds. J-D. Deuschel et al., Springer Proceedings in Mathematics 11:275--287, (2012)
    pdf
  45. G. Slade. The self-avoiding walk: A brief survey. In Surveys in Stochastic Processes, pp. 181-199, eds. J. Blath, P. Imkeller, S. Roelly, European Mathematical Society, Zurich, (2011).
    pdf
  46. Y. Mejía Miranda and G. Slade. The growth constants of lattice trees and lattice animals in high dimensions. Elect. Comm. Probab. 16:129--136, (2011).
    pdf
  47. D. Brydges and G. Slade. Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In Proceedings of the International Congress of Mathematicians, 2010, eds. R. Bhatia et al., Volume 4, pp. 2232--2257, World Scientific, (2011).
    pdf
  48. D.C. Brydges, J.Z. Imbrie, G. Slade. Functional integral representations for self-avoiding walk. Probability Surveys, 6:34--61, (2009).
    pdf
  49. N. Clisby, G. Slade. Polygons and the lace expansion. In Polygons, Polyominoes and Polycubes, pp. 117-142, ed. A.J. Guttmann, Lecture Notes in Physics, Vol. 775. Springer, Dordrecht (2009).
    pdf
  50. R. van der Hofstad, M. Holmes, G. Slade. An extension of the inductive approach to the lace expansion. Elect. Comm. Probab. 13:291--301, (2008).
    pdf
    More detailed proofs are available in the unpublished document: R. van der Hofstad, M. Holmes, G. Slade, Extension of the generalised inductive approach to the lace expansion: Full proof, available here.
  51. O. Angel, J. Goodman, F. den Hollander, G. Slade. Invasion percolation on regular trees. Ann. Probab. 36:420--466, (2008).
    pdf
  52. M.T. Barlow, A.A. Járai, T. Kumagai, G. Slade. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278:385--431, (2008).
    pdf
  53. N. Clisby, R. Liang, G. Slade. Self-avoiding walk enumeration via the lace expansion. J. Phys. A: Math. Theor. 40:10973--11017, (2007).
    pdf
    More extensive tables of enumeration are available in machine readable form here, or in a more human readable form in the unpublished document: N. Clisby, R. Liang, G. Slade, Self-avoiding walk enumeration via the lace expansion: tables, available here.
  54. R. van der Hofstad, F. den Hollander, G. Slade. The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion. Ann. Inst. H. Poincaré Probab. Statist. 43:509--570, (2007).
    pdf
  55. R. van der Hofstad, F. den Hollander, G. Slade. The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction. Probab. Theory Relat. Fields. 138:363--389, (2007).
    pdf
  56. Y. Chan, A.L. Owczarek, A. Rechnitzer, G. Slade. Mean unknotting times of random knots and embeddings. J. Stat. Mech. P05004, (2007).
    pdf
  57. R. van der Hofstad and G. Slade. Expansion in n-1 for percolation critical values on the n-cube and Zn: the first three terms. Combinatorics, Probability and Computing 15:695--713, (2006).
    pdf
  58. C. Borgs, J.T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs: III. The phase transition for the n-cube. Combinatorica 26:395--410, (2006).
    pdf
  59. C. Borgs, J.T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs: II. The lace expansion and the triangle condition. Ann. Probab. 33:1886--1944, (2005).
    pdf
  60. C. Borgs, J.T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs: I. The scaling window under the triangle condition. Random Struct. Alg. 27:137--184, (2005).
    pdf
  61. R. van der Hofstad and G. Slade. Asymptotic expansion in n-1 for percolation critical values on the n-cube and Zn. Random Struct. Alg. 27:331--357, (2005).
    pdf
  62. G. Slade. The phase transition for random subgraphs of the n-cube. Extended abstract for the 16th Annual International Conference on Formal Power Series and Algebraic Combinatorics, Vancouver 2004.
    pdf
  63. M. Holmes, A.A. Járai, A. Sakai and G. Slade.  High-dimensional graphical networks of self-avoiding walks. Canad. J. Math. 56:77--114, (2004).
    pdf
  64. R. van der Hofstad and G. Slade.  The lace expansion on a tree with application to networks of self-avoiding walks. Adv. Appl. Math. 30:471--528, (2003).
    pdf
  65. R. van der Hofstad and G. Slade.  Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions. Ann. Inst. H. Poincaré Probab. Statist. 39:413--485, (2003). This paper won the Prize of the Annales de l'Institut Henri Poincaré 2003.
    pdf
  66. T. Hara, R. van der Hofstad and G. Slade.  Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31:349--408, (2003).
    pdf
  67. R. van der Hofstad, F. den Hollander and G. Slade.  Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions. Commun. Math. Phys. 231:435--461, (2002).
    pdf
  68. R. van der Hofstad and G. Slade.  A generalised inductive approach to the lace expansion. Probab. Th. Rel. Fields. 122:389--430, (2002).
    pdf
  69. T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Stat. Phys., 99:1075--1168, (2000).
    pdf
  70. T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys., 41:1244--1293, (2000).
    pdf
  71. C. Borgs, J.T. Chayes, R. van der Hofstad, and G. Slade. Mean-field lattice trees. Annals of Combinatorics, 3:205--221, (1999).
    pdf
  72. G. Slade. Lattice trees, percolation and super-Brownian motion. In: Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten, eds. M. Bramson and R. Durrett, Birkhäuser (Basel), pages 35--51, (1999).
    pdf
  73. T. Hara and G. Slade, The incipient infinite cluster in high-dimensional percolation. Electron. Res. Announc. Amer. Math. Soc., 4:48--55, (1998).
  74. E. Derbez and G. Slade, The scaling limit of lattice trees in high dimensions. Commun. Math. Phys., 193:69--104, (1998).
  75. R. van der Hofstad, F. den Hollander and G. Slade, A new inductive approach to the lace expansion for self-avoiding walks. Probab. Th. Rel. Fields, 111:253--286, (1998).
  76. E. Derbez and G. Slade, Lattice trees and super-Brownian motion. Canadian Mathematical Bulletin, 40:19--38, (1997).
  77. D.C. Brydges and G. Slade, Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation. Commun. Math. Phys., 182:485--504, (1996).
  78. D.C. Brydges and G. Slade, The diffusive phase of a model of self-interacting walks. Probability Theory and Related Fields, 103:285--315, (1995).
  79. T. Hara and G. Slade, The self-avoiding-walk and percolation critical points in high dimensions. Combinatorics, Probability and Computing, 4:197--215, (1995). Unpublished appendix.
  80. G. Slade, Bounds on the self-avoiding-walk connective constant, Journal of Fourier Analysis and Applications, Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, June 28 -- July 3, 1993), 525--533, (1995).
    pdf
  81. G. Slade, The critical behaviour of random systems. Proceedings of the International Congress of Mathematicians, August 3-11, 1994, Zürich, Volume 2, pages 1315--1324. Ed. S.D. Chatterji; Birkhäuser, Basel (1995).
  82. D.C. Brydges and G. Slade, A collapse transition for self-attracting walks. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, 1:363--372, (1994).
  83. T. Hara and G. Slade, Mean-field behaviour and the lace expansion. Pages 87--122 in Probability and Phase Transition, ed. G.R. Grimmett, Kluwer (Dordrecht), (1994). Proceedings of the NATO Advanced Study Institute on Probability Theory of Spatial Disorder and Phase Transition, July 1993, Isaac Newton Institute, Cambridge.
    pdf
  84. T. Hara, G. Slade and A.D. Sokal, New lower bounds for the self-avoiding-walk connective constant, J. Stat. Phys., 72:479--517, (1993). Erratum, J. Stat. Phys., 78:1187--1188, (1995).
  85. T. Hara and G. Slade, The number and size of branched polymers in high dimensions. J. Stat. Phys., 67:1009--1038, (1992).
  86. T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour, Commun. Math. Phys., 147:101--136, (1992).
  87. T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions. Reviews in Math. Phys., 4:235--327, (1992).
    pdf
  88. T. Hara and G. Slade, Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc., 25: 417--423, (1991).
  89. G. Slade, The lace expansion and the upper critical dimension for percolation. Lectures in Applied Mathematics, 27:53--63, (1991). (Mathematics of Random Media, eds. W.E. Kohler and B.S. White, A.M.S., Providence. Proceedings of the AMS-SIAM Summer Seminar on Mathematics of Random Media, Blacksburg, June 1989.)
  90. T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys., 128:333--391, (1990).
  91. T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys., 59:1469--1510, (1990).
  92. G. Slade, The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab., 17:91--107, (1989).
  93. T. Hara and G. Slade, The triangle condition for percolation, Bull. Amer. Math. Soc., 21, 269--273, (1989).
  94. T. Hara and G. Slade, The mean-field critical behaviour of percolation in high dimensions. Proceedings of the IXth International Congress on Mathematical Physics, Swansea, July 1988, pages 450--453. Eds. B. Simon, A. Truman, I.M. Davies; Adam Hilger, Bristol and New York, (1989).
  95. G. Slade, Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A: Math. Gen., 21:L417--L420 (1988).
  96. G. Slade, The diffusion of self-avoiding random walk in high dimensions. Commun. Math. Phys., 110:661--683, (1987).
  97. G. Slade, The effective potential as an energy density: the one phase region, Commun. Math. Phys., 104:573--580, (1986).
  98. G. Slade, The loop expansion for the effective potential in the P(φ)2 quantum field theory, Commun. Math. Phys., 102:425--462, (1985).
  99. Back to top


    Expository Writing:

  100. G. Slade. Probabilistic Models of Critical Phenomena. This is an essay intended for a general mathematical audience, from The Princeton Companion to Mathematics, ed. T. Gowers, assoc. eds. J. Barrow-Green and I. Leader. Princeton University Press, Princeton, N.J., (2008). Reprinted by permission of Princeton University Press. Posted November 22, 2004.
    pdf
    Clarification
  101. G. Slade. Wendelin Werner awarded Fields Medal. PIMS Newsletter 10, Issue 2: 4--5, Winter 2007.
  102. G. Slade. Scaling limits and super-Brownian motion. Notices Amer. Math. Soc. 49, No. 9 (October):1056--1067, (2002).
  103. G. Slade. Book review: Random walks and random environments, by Barry D. Hughes. Bull. Amer. Math. Soc. 35:347--349, (1998).
  104. G. Slade. Random walks. American Scientist, 84:146--153, (1996).
  105. G. Slade. Self-avoiding walks. The Mathematical Intelligencer 16:29--35, (1994).
    pdf
  106. Back to top

    Other:

  107. G. Slade. Laudatio for David Brydges on the occasion of his receiving the Henri Poincaré Prize. July 1, 2024.
    pdf
  108. G. Slade. Kotani's Theorem for the Fourier Transform. Unpublished note. June 19, 2020.
    arXiv
  109. Back to top


Collaborators:

Omer Angel
Martin Barlow
Roland Bauerschmidt
Christian Borgs
David Brydges
Yao-ban Chan
Jennifer Chayes
Nathan Clisby
Antoine Dahlqvist
Eric Derbez
Hugo Duminil-Copin
Jesse Goodman
Takashi Hara
Remco van der Hofstad
Frank den Hollander
Mark Holmes
Tom Hutchcroft
John Imbrie
Antal Járai
Takashi Kumagai
Richard Liang
Yucheng Liu
Martin Lohmann
Neal Madras
Yuri Mejía Miranda
Emmanuel Michta
Aleks Owczarek
Romain Panis
Jiwoon Park
Andrew Rechnitzer
Akira Sakai
Alan Sokal
Joel Spencer
Alexandre Tomberg
Benjamin Wallace

Back to top